14 research outputs found
Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap
Superpositions of rotational states in polar molecules induce strong,
long-range dipolar interactions. Here we extend the rotational coherence by
nearly one order of magnitude to 8.7(6) ms in a dilute gas of polar
NaK molecules in an optical trap. We demonstrate spin-decoupled
magic trapping, which cancels first-order and reduces second-order differential
light shifts. The latter is achieved with a dc electric field that decouples
nuclear spin, rotation and trapping light field. We observe density-dependent
coherence times, which can be explained by dipolar interactions in the bulk
gas.Comment: 10 pages, 8 figure
Transition from a polaronic condensate to a degenerate Fermi gas of heteronuclear molecules
The interplay of quantum statistics and interactions in atomic Bose--Fermi
mixtures leads to a phase diagram markedly different from pure fermionic or
bosonic systems. However, investigating this phase diagram remains challenging
when bosons condense. Here, we observe evidence for a quantum phase transition
from a polaronic to a molecular phase in a density-matched degenerate
Bose--Fermi mixture. The condensate fraction, representing the order parameter
of the transition, is depleted by interactions and the build-up of strong
correlations results in the emergence of a molecular Fermi gas. By driving
through the transition, we ultimately produce a quantum-degenerate sample of
sodium-potassium molecules exhibiting a large molecule-frame dipole moment of
2.7 Debye. The observed phase transition represents a new phenomenon
complementary to the paradigmatic BEC-BCS crossover observed in Fermi systems.Comment: 12 pages, 9 figure
Collisions of ultracold molecules in bright and dark optical dipole traps
Understanding collisions between ultracold molecules is crucial for making
stable molecular quantum gases and harnessing their rich internal degrees of
freedom for quantum engineering. Transient complexes can strongly influence
collisional physics, but in the ultracold regime, key aspects of their behavior
have remained unknown. To explain experimentally observed loss of ground-state
molecules from optical dipole traps, it was recently proposed that molecular
complexes can be lost due to photo-excitation. By trapping molecules in a
repulsive box potential using laser light near a narrow molecular transition,
we are able to test this hypothesis with light intensities three orders of
magnitude lower than what is typical in red-detuned dipole traps. This allows
us to investigate light-induced collisional loss in a gas of nonreactive
fermionic NaK molecules. Even for the lowest intensities
available in our experiment, our results are consistent with universal loss,
meaning unit loss probability inside the short-range interaction potential. Our
findings disagree by at least two orders of magnitude with latest theoretical
predictions, showing that crucial aspects of molecular collisions are not yet
understood, and provide a benchmark for the development of new theories.Comment: 13 pages, 11 figure
Understanding and controlling the collisions of ultracold polar molecules
Ultrakalte polare Moleküle bieten eine Vielzahl von faszinierenden Möglichkeiten für physikalische Forschung. Die Vorschläge für ihre Nutzung reichen von Quantenchemie, wo sie detaillierte Untersuchung von Reaktionsprozessen erlauben, über Präzisionsspektroskopie zur Detektion von Supersymmetrie oder Dunkler Materie, bis hin zur Simulation stark wechselwirkender Quantenmaterie. Die hohe Anzahl von internen Freiheitsgraden der Moleküle, die all diese Anwendungen erst ermöglicht, bringt jedoch auch signifikante Schwierigkeiten mit sich. Entsprechend ist es eine nicht zu unterschätzende Aufgabe, ultrakalte Moleküle in Experimenten herzustellen und zu kontrollieren. Obwohl während der letzten Jahrzehnte große Anstrengungen unternommen wurden, experimentelle Techniken zu entwickeln und verbessern, ist die Kühlung von Molekülen noch immer schwierig und die tiefsten erreichten Temperaturen sind weit von dem entfernt, was mit atomaren Gasen möglich ist. Aus diesem Grund konnte bis heute die überwiegende Mehrzahl der vorhergesagten neuen Quantenphasen nicht realisiert werden. In den vergangenen zehn Jahren waren unverstandene und verlustbehaftete Stoßprozesse zwischen Molekülen das größte Hindernis. Sie machten evaporative Kühlung sehr schwierig und begrenzten die Lebensdauer stark wechselwirkender Gase mit hoher Dichte.
In dieser Dissertation berichte ich über Fortschritte bei der experimentellen Kontrolle von fermionischen polaren Molekülen der Spezies ²³Na⁴⁰K, die es schließlich erlaubten, die Stoßprozesse zu regulieren und evaporative Kühlung zu demonstrieren. In Kapitel 1 gebe ich eine Einführung in die Molekülphysik. Ich erkläre dort die grundlegenden Eigenschaften zweiatomiger Moleküle und ihrer Quantenzustände sowie deren gruppentheoretische Beschreibung. Dies ermöglicht das Verständnis der Herausforderungen des Forschungsfeldes. Darauf folgt in Kapitel 2 eine chronologische Zusammenfassung der Entwicklungen dieses Feldes in den letzten Jahrzehnten. Diese soll nicht nur die erfolgreichen Pfade betrachten, sondern auch die Vielzahl an Sackgassen und Umwegen, ohne die der Erfolg nicht möglich gewesen wäre. Ab Kapitel 3 beschreibe ich neue Forschung. Kapitel 3 ist auf eine technische Verbesserung fokussiert: Es beschreibt ein neues Lasersystem für stimulated Raman adiabatic passage (STIRAP), das unser Team gebaut und getestet hat. Dieses Lasersystem hat die Effizienz der Molekülerzeugung verbessert und einen großen Beitrag zur Vereinfachung unserer Experimente geleistet. Kapitel 4 enthält eine Untersuchung des X¹Σ⁺ ↔ b³Π₀-Übergangs im ²³Na⁴⁰K-Molekül. Es handelt sich hierbei um einen nahezu dipolverbotenen Übergang mit entsprechend schmaler Linienbreite, der außerdem im Spektrum der Übergänge relativ isoliert liegt. Dies erlaubt es, nahe am Übergang sowohl anziehende als auch abstoßende optische Dipolfallen zu erzeugen, ohne dabei hohe Photonenstreuraten in Kauf nehmen zu müssen. Außerdem kann durch kleine Änderungen der Wellenlänge die Wirkung der Dipolfalle auf bestimmte Rotationszustände gesteuert werden, was sich für viele Experimente als nützlich erwiesen hat. Kapitel 5 beinhaltet eine Untersuchung von Stößen zwischen zwei Molekülen im internen Grundzustand bei extrem geringer Lichtintensität. Mithilfe einer repulsiven, zylinderförmigen Dipolfalle konnte unser Team zeigen, dass die Verlustrate bei Zweikörperstößen von ²³Na⁴⁰K nicht von der Lichtintensität abhängt. Diese Messung steht im Widerspruch mit theoretischen Vorhersagen sowie Beobachtungen an anderen Molekülspezies, wurde jedoch von Kollegen aus Hong Kong und Hannover bestätigt. Dieses Rätsel ist aktuell ungelöst. In Kapitel 6 beschreibe ich die erfolgreiche Demonstration einer Methode zur Unterdrückung der Zweikörperverluste. Mittels starker Mikrowellenfelder werden dabei Wechselwirkungen erzeugt, die bei ausreichend kurzem Abstand abstoßend wirken und Moleküle daran hindern, sich zu nahe zu kommen. Mit diesem Mikrowellenschild konnte unser Team evaporative Kühlung von polaren Molekülen durchführen und das derzeit kälteste molekulare Quantengas bei einer Temperatur von 21nK herstellen. Eine Reihe an Vorhersagen, die bis jetzt nicht experimentell realisiert werden konnten, sind damit nun erreichbar geworden. Daher gebe ich schließlich in Kapitel 7 einen Überblick über diese neuen Möglichkeiten. Dieses Kapitel enthält Abschätzungen darüber wie realistisch die Umsetzung ausgewählter Vorhersagen ist und welche experimentellen Herausforderungen zu erwarten sind.Ultracold polar molecules offer a multitude of fascinating possibilities for physical research. Proposals for their use reach from quantum chemistry, where they enable detailed studies of reaction processes, to precision spectroscopy for detecting supersymmetry or dark matter, to simulating of strongly interacting quantum matter. However, the large number of internal degrees of freedom, which enables these applications, also causes significant difficulties. Consequently, the task of preparing and controlling molecules in experiments is not to be underestimated. Though large efforts have been undertaken to develop and improve experimental techniques during recent decades, the cooling of molecules remains difficult, and the lowest reachable temperatures are still far higher than with atoms. Therefore, the majority of predicted new quantum phases could not be realised yet. During the last ten years, the main obstacle were lossy collision processes between molecules, which are still not understood. They have made evaporative cooling very difficult and have limited the lifetime of strongly interacting gases at high density.
In this dissertation, I report on progress in the experimental control of fermionic polar molecules of ²³Na⁴⁰K, which allowed regulating the collisions and demonstrating evaporative cooling. In Chapter 1, I give an introduction to molecule physics. I explain the fundamental properties of diatomic molecules and their quantum states, as well as their group-theoretical description. This allows understanding of the challenges of the field. Chapter 2 follows with a chronological summary of the developments in ultracold-molecule research during recent decades. It focuses not only on the paths which turned out to be successful, but also sheds light on the many detours and dead ends without which success could not have been achieved. Beginning from Chapter 3, I describe original research. Chapter 3 is focused on a technical improvement: it describes a new laser system for stimulated Raman adiabatic passage (STIRAP), which our team built and tested. This laser system has improved the efficiency of molecule creation and has contributed greatly to simplifying our experiments. Chapter 4 contains an investigation of the X¹Σ⁺ ↔ b³Π₀ transition in the ²³Na⁴⁰K molecule. This transition is almost dipole-forbidden with a correspondingly small linewidth. Additionally, its position is relatively isolated in the transition spectrum. This allows the creation of both attractive and repulsive dipole traps near the transition. Furthermore, small wavelength changes can influence the effect of the dipole trap on specific rotational states, which has turned out to be useful for many experiments. Chapter 5 treats collisions between molecules in their internal ground state at extremely low light intensity. By using a repulsive, cylinder-shaped dipole trap, our team was able to show that the loss rate in two-body collisions of ²³Na⁴⁰K is independent of light intensity. This measurement is in strong contradiction with theoretical predictions and with observations on other molecule species, but has been confirmed by colleagues in Hong Kong and Hannover. As of now, this riddle remains unsolved. In Chapter 6, I describe the successful demonstration of a method for suppressing these two-body losses. With strong microwave fields, interactions can be induced which become repulsive at sufficiently small distance and thereby prevent colliding molecules from coming too close to each other. This microwave shielding has enabled our team to demonstrate evaporative cooling of polar molecules, and to create the currently coldest molecular quantum gas at a temperature of 21nK. With this, a number of predictions, which were previously out of experimental reach have now become feasible. Therefore, in Chapter 7, I give an overview of these new possibilities. This chapter contains estimations about how realistic certain proposals are and which experimental challenges are to be expected
Efficient conversion of closed-channel dominated Feshbach molecules of NaK to their absolute ground state
We demonstrate the transfer of NaK molecules from a
closed-channel dominated Feshbach-molecule state to the absolute ground state.
The Feshbach molecules are initially created from a gas of sodium and potassium
atoms via adiabatic ramping over a Feshbach resonance at 78.3G. The
molecules are then transferred to the absolute ground state using stimulated
Raman adiabatic passage with an intermediate state in the spin-orbit-coupled
complex . Our
measurements show that the pump transition dipole moment linearly increases
with the closed-channel fraction. Thus, the pump-beam intensity can be two
orders of magnitude lower than is necessary with open-channel dominated
Feshbach molecules. We also demonstrate that the phase noise of the Raman
lasers can be reduced by filter cavities, significantly improving the transfer
efficiency.Comment: 8 pages, 7 figure
Suppression of Unitary Three-body Loss in a Degenerate Bose-Fermi Mixture
We study three-body loss in an ultracold mixture of a thermal Bose gas and a
degenerate Fermi gas. We find that at unitarity, where the interspecies
scattering length diverges, the usual inverse-square temperature scaling of the
three-body loss found in non-degenerate systems is strongly modified and
reduced with the increasing degeneracy of the Fermi gas. While the reduction of
loss is qualitatively explained within the few-body scattering framework, a
remaining suppression provides evidence for the long-range RKKY interactions
mediated by fermions between bosons. Our model based on RKKY interactions
quantitatively reproduces the data without free parameters, and predicts one
order of magnitude reduction of the three-body loss coefficient in the deeply
Fermi-degenerate regime
Long-lived fermionic Feshbach molecules with tunable -wave interactions
Ultracold fermionic Feshbach molecules are promising candidates for exploring
quantum matter with strong -wave interactions, however, their lifetimes were
measured to be short. Here, we characterize the -wave collisions of
ultracold fermionic Feshbach molecules for
different scattering lengths and temperatures. By increasing the binding energy
of the molecules, the two-body loss coefficient reduces by three orders of
magnitude leading to a second-long lifetime, 20 times longer than that of
ground-state molecules. We exploit the scaling of elastic and inelastic
collisions with the scattering length and temperature to identify a regime
where the elastic collisions dominate over the inelastic ones allowing the
molecular sample to thermalize. Our work provides a benchmark for four-body
calculations of molecular collisions and is essential for producing a
degenerate Fermi gas of Feshbach molecules
Evaporation of microwave-shielded polar molecules to quantum degeneracy
Ultracold polar molecules offer strong electric dipole moments and rich
internal structure, which makes them ideal building blocks to explore exotic
quantum matter, implement novel quantum information schemes, or test
fundamental symmetries of nature. Realizing their full potential requires
cooling interacting molecular gases deeply into the quantum degenerate regime.
However, the complexity of molecules which makes their collisions intrinsically
unstable at the short range, even for nonreactive molecules, has so far
prevented the cooling to quantum degeneracy in three dimensions. Here, we
demonstrate evaporative cooling of a three-dimensional gas of fermionic
sodium-potassium molecules to well below the Fermi temperature using microwave
shielding. The molecules are protected from reaching short range with a
repulsive barrier engineered by coupling rotational states with a blue-detuned
circularly polarized microwave. The microwave dressing induces strong tunable
dipolar interactions between the molecules, leading to high elastic collision
rates that can exceed the inelastic ones by at least a factor of 460. This
large elastic-to-inelastic collision ratio allows us to cool the molecular gas
down to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature. Such
unprecedentedly cold and dense samples of polar molecules open the path to the
exploration of novel many-body phenomena, such as the long-sought topological
p-wave superfluid states of ultracold matter.Comment: 11 pages, 7 figure