3,990 research outputs found

    Rapid, Precise, and High-Sensitivity Acquisition of Paleomagnetic and Rock-Magnetic Data: Development of a Low-Noise Automatic Sample Changing System for Superconducting Rock Magnetometers

    Get PDF
    Among Earth sciences, paleomagnetism is particularly linked to the statistics of large sample sets as a matter of historical development and logistical necessity. Because the geomagnetic field varies over timescales relevant to sedimentary deposition and igneous intrusion, while the fidelity of recorded magnetization is modulated by original properties of rock units and by alteration histories, "ideal" paleomagnetic results measure remanent magnetizations of hundreds of samples at dozens of progressive demagnetization levels, accompanied by tests of magnetic composition on representative sister specimens. We present an inexpensive, open source system for automating paleomagnetic and rock magnetic measurements. Using vacuum pick-and-place technology and a quartz-glass sample holder, the system can in one hour measure remanent magnetizations, as weak as a few pAm2, of ~30 specimens in two vertical orientations with measurement errors comparable to those of the best manual systems. The system reduces the number of manual manipulations required per specimen ~8 fold

    Carbon nanotube quantum dots on hexagonal boron nitride

    Full text link
    We report the fabrication details and low-temperature characteristics of the first carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.Comment: 4 pages, 4 figure

    Demonstration of Cross-Reactive Antibodies to Smooth Gram-Negative Bacteria in Antiserum to Escherichia coli J5

    Get PDF
    We investigated the discrepancy between the broad cross-protection against gram-negative infections afforded by antiserum to Escherichia coli J5 and its apparently narrow cross-reactivity in vitro. Rabbits immunized with J5 bacteria produced antibodies to both the J5 lipopolysaccharide (LPS; titer by ELISA, 1:60,000) and LPS from the Re mutant of Salmonella minnesota (i.e., to the ketodeoxyoctonate [KDO] and lipid A determinants; titer, 1:3,200). In highly diluted antiserum, titers of antibody to J5 LPS were reduced by 28%-41% after adsorption with seven strains of smooth gram-negative bacteria and by only 4% after adsorption with the Re mutant. Smooth gram-negative bacteria adsorbed virtually all antibody to Re LPS. Therefore, rabbit antiserum to J5 contains type-specific antibodies to core determinants distal to KDO that can obscure highly cross-reactive antibodies to lipid A-KDO in vitro. Cross-reactive antibodies are demonstrable by adsorption with whole bacteria at limiting concentrations of antibod

    On the Performance Prediction of BLAS-based Tensor Contractions

    Full text link
    Tensor operations are surging as the computational building blocks for a variety of scientific simulations and the development of high-performance kernels for such operations is known to be a challenging task. While for operations on one- and two-dimensional tensors there exist standardized interfaces and highly-optimized libraries (BLAS), for higher dimensional tensors neither standards nor highly-tuned implementations exist yet. In this paper, we consider contractions between two tensors of arbitrary dimensionality and take on the challenge of generating high-performance implementations by resorting to sequences of BLAS kernels. The approach consists in breaking the contraction down into operations that only involve matrices or vectors. Since in general there are many alternative ways of decomposing a contraction, we are able to methodically derive a large family of algorithms. The main contribution of this paper is a systematic methodology to accurately identify the fastest algorithms in the bunch, without executing them. The goal is instead accomplished with the help of a set of cache-aware micro-benchmarks for the underlying BLAS kernels. The predictions we construct from such benchmarks allow us to reliably single out the best-performing algorithms in a tiny fraction of the time taken by the direct execution of the algorithms.Comment: Submitted to PMBS1

    Helium and Iron in X-ray galaxy clusters

    Get PDF
    I discuss the role of the sedimentation of helium in galaxy cluster cores on the observed X-ray properties and present a history of the metal accumulation in the ICM, with new calculations with respect to my previous work following the recent evidence of a bi-modal distribution of the delay time in Supernovae Type Ia.Comment: 6 pages. To appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    Subacute neural stem cell therapy for traumatic brain injury.

    Get PDF
    INTRODUCTION: Traumatic brain injury (TBI) frequently results in devastating and prolonged morbidity. Cellular therapy is a burgeoning field of experimental treatment that has shown promise in the management of many diseases, including TBI. Previous work suggests that certain stem and progenitor cell populations migrate to sites of inflammation and improve functional outcome in rodents after neural injury. Unfortunately, recent study has revealed potential limitations of acute and intravenous stem cell therapy. We studied subacute, direct intracerebral neural stem and progenitor cell (NSC) therapy for TBI. MATERIALS AND METHODS: The NSCs were characterized by flow cytometry and placed (400,000 cells in 50 muL 1x phosphate-buffered saline) into and around the direct injury area, using stereotactic guidance, of female Sprague Dawley rats 1 wk after undergoing a controlled cortical impact injury. Immunohistochemistry was used to identify cells located in the brain at 48 h and 2 wk after administration. Motor function was assessed using the neurological severity score, foot fault, rotarod, and beam balance. Cognitive function was assessed using the Morris water maze learning paradigm. Repeated measures analysis of variance with post-hoc analysis were used to determine significance at P \u3c 0.05. RESULTS: Immunohistochemistry analysis revealed that 1.4-1.9% of infused cells remained in the neural tissue at 48 h and 2 wk post placement. Nearly all cells were located along injection tracks at 48 h. At 2 wk some cell dispersion was apparent. Rotarod motor testing revealed significant increases in maximal speed among NSC-treated rats compared with saline controls at d 4 (36.4 versus 27.1 rpm, P \u3c 0.05) and 5 (35.8 versus 28.9 rpm, P \u3c 0.05). All other motor and cognitive evaluations were not significantly different compared to controls. CONCLUSIONS: Placement of NSCs led to the cells incorporating and remaining in the tissues 2 wk after placement. Motor function tests revealed improvements in the ability to run on a rotating rod; however, other motor and cognitive functions were not significantly improved by NSC therapy. Further examination of a dose response and optimization of placement strategy may improve long-term cell survival and maximize functional recovery

    Ground State Energy of the Low Density Bose Gas

    Full text link
    Now that the properties of low temperature Bose gases at low density, ρ\rho, can be examined experimentally it is appropriate to revisit some of the formulas deduced by many authors 4-5 decades ago. One of these is that the leading term in the energy/particle is 2π2ρa/m2\pi \hbar^2 \rho a/m, where aa is the scattering length. Owing to the delicate and peculiar nature of bosonic correlations, four decades of research have failed to establish this plausible formula rigorously. The only known lower bound for the energy was found by Dyson in 1957, but it was 14 times too small. The correct bound is proved here.Comment: 4 pages, Revtex, reference 12 change

    Consensus recommendations for transcranial color-coded duplex sonography for the assessment of intracranial arteries in clinical trials on acute stroke

    Full text link
    BACKGROUND AND PURPOSE: Transcranial color-coded duplex sonography has become a standard diagnostic technique to assess the intracranial arterial status in acute stroke. It is increasingly used for the evaluation of prognosis and the success of revascularization in multicenter trials. The aim of this international consensus procedure was to develop recommendations on the methodology and documentation to be used for assessment of intracranial occlusion and for monitoring of recanalization. METHODS: Thirty-five experts participated in the consensus process. The presented recommendations were approved during a meeting of the consensus group in October 2008 in Giessen, Germany. The project was an initiative of the German Competence Network Stroke and performed under the auspices of the Neurosonology Research Group of the World Federation of Neurology. RESULTS: Recommendations are given on how examinations should be performed in the time-limited situation of acute stroke, including criteria to assess the quality of the acoustic bone window, the use of echo contrast agents, and the evaluation of intracranial vessel status. The important issues of the examiners' training and experience, the documentation, and analysis of study results are addressed. One central aspect was the development of standardized criteria for diagnosis of arterial occlusion. A transcranial color-coded duplex sonography recanalization score based on objective hemodynamic criteria is introduced (consensus on grading intracranial flow obstruction [COGIF] score). CONCLUSIONS: This work presents consensus statements in an attempt to standardize the application of transcranial color-coded duplex sonography in the setting of acute stroke research, aiming to improve the reliability and reproducibility of the results of future stroke studies

    A differential method for bounding the ground state energy

    Get PDF
    For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics

    Modern approaches to pediatric brain injury therapy.

    Get PDF
    Each year, pediatric traumatic brain injury (TBI) accounts for 435,000 emergency department visits, 37,000 hospital admissions, and approximately 2,500 deaths in the United States. TBI results in immediate injury from direct mechanical force and shear. Secondary injury results from the release of biochemical or inflammatory factors that alter the loco-regional milieu in the acute, subacute, and delayed intervals after a mechanical insult. Preliminary preclinical and clinical research is underway to evaluate the benefit from progenitor cell therapeutics, hypertonic saline infusion, and controlled hypothermia. However, all phase III clinical trials investigating pharmacologic monotherapy for TBI have shown no benefit. A recent National Institutes of Health consensus statement recommends research into multimodality treatments for TBI. This article will review the complex pathophysiology of TBI as well as the possible therapeutic mechanisms of progenitor cell transplantation, hypertonic saline infusion, and controlled hypothermia for possible utilization in multimodality clinical trials
    corecore