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Abstract

Introduction—Traumatic brain injury (TBI) frequently results in devastating and prolonged 

morbidity. Cellular therapy is a burgeoning field of experimental treatment that has shown 

promise in the management of many diseases, including TBI. Previous work suggests that certain 

stem and progenitor cell populations migrate to sites of inflammation and improve functional 

outcome in rodents after neural injury. Unfortunately, recent study has revealed potential 

limitations of acute and intravenous stem cell therapy. We studied subacute, direct intracerebral 

neural stem and progenitor cell (NSC) therapy for TBI.

Materials and methods—The NSCs were characterized by flow cytometry and placed 

(400,000 cells in 50 μL 1× phosphate-buffered saline) into and around the direct injury area, using 

stereotactic guidance, of female Sprague Dawley rats 1 wk after undergoing a controlled cortical 

impact injury. Immunohistochemistry was used to identify cells located in the brain at 48 h and 2 

wk after administration. Motor function was assessed using the neurological severity score, foot 

fault, rotarod, and beam balance. Cognitive function was assessed using the Morris water maze 

learning paradigm. Repeated measures analysis of variance with post-hoc analysis were used to 

determine significance at P < 0.05.

Results—Immunohistochemistry analysis revealed that 1.4–1.9% of infused cells remained in 

the neural tissue at 48 h and 2 wk post placement. Nearly all cells were located along injection 

tracks at 48 h. At 2 wk some cell dispersion was apparent. Rotarod motor testing revealed 

significant increases in maximal speed among NSC-treated rats compared with saline controls at d 

4 (36.4 versus 27.1 rpm, P < 0.05) and 5 (35.8 versus 28.9 rpm, P < 0.05). All other motor and 

cognitive evaluations were not significantly different compared to controls.

Conclusions—Placement of NSCs led to the cells incorporating and remaining in the tissues 2 

wk after placement. Motor function tests revealed improvements in the ability to run on a rotating 

rod; however, other motor and cognitive functions were not significantly improved by NSC 

therapy. Further examination of a dose response and optimization of placement strategy may 

improve long-term cell survival and maximize functional recovery.
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INTRODUCTION

Traumatic brain injury (TBI) contributes to 50% of all trauma-related deaths [1]. Brain 

injury is frequently involved in the early or late mortality that often results from a 

polytraumatic insult [2]. When patients do survive after a TBI, the resultant acute and/or 

chronic deficits in motor, cognitive, behavioral, and/or social functioning leave devastating 

effects on patients, families, and society [3].

Although many therapeutic interventions have shown preclinical success in altering the 

cascade of biochemical events that follow TBI, few have been shown to be efficacious in 

clinical trials [4]. Cellular therapy has shown preclinical promise in the management of TBI. 

In particular, neural stem/progenitor cells have been shown to mediate motor and cognitive 

functional recovery when transplanted intracerebrally after TBI [5-8].

The optimal timing of cell delivery to maximize functional recovery and transplanted cell 

survival, while avoiding the potentially antagonistic acute, proinflammatory 

microenvironment, remains unknown. Recent work has shown that the intracerebral milieu 

may affect the efficacy of cell therapy. Shindo et al. found that the intracerebral 

microenvironment after a mild TBI was more favorable for neural stem cell survival, as 

compared to severe TBI [9]. Additionally, Molcanyi and colleagues transplanted embryonic 

stem cells into the injured cortex 72 h after fluid-percussion injury and identified significant 

transplanted cell death secondary to macrophage phagocytosis, a key component of the 

inflammatory response to TBI [10].

Given previous success with acute intracerebral neural stem cell therapy, combined with 

recent work that has further clarified the intracerebral pro-inflammatory response to injury 

and novel insight into the relationship between the local milieu and transplanted cell 

survival, we evaluated transplantation of rat neural stem/ progenitor cells into the area of 

injury and penumbral area 7 d after a controlled cortical impact TBI. Immunohistochemistry 

was used to evaluate intracerebral cell survival/migration. Outcome measures included 

motor and/or cognitive function recovery. We hypothesized that cells would remain near the 

area of injury and improve motor and cognitive functional recovery.

MATERIALS AND METHODS

Isolation, Characterization, and Labeling of Rat Neural Stem Cells

All protocols involving the use of animals were in compliance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and were approved by the 

Institutional Animal Care and Use Committee (protocols HSC-AWC-06-038, 07-055, and 

07-113). Rat neural stem cells (NSCs) and the rat NSC flow cytometry characterization kit 

were purchased from Alphagenix (Alphagenix, Inc., Sioux Falls, SD). The manufacturer's 

protocol was followed to culture and expand the neural stem cells as neurospheres. Flow 
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cytometric immunophenotyping was used to characterize the NSCs with the following 

markers: Nestin, glial fibrillary acidic protein (GFAP), β-tubulin III, 2′,3′-cyclic nucleotide 

3′-phosphodiesterase (CNPase), and myelin basic protein. Cells between passage 2 and 4 

were used. NSCs were labeled with Qtracker 655 cell labeling kit (Invitrogen, Carlsbad, 

CA) per the manufacturer's protocol. Cell-labeling efficiency was greater than 90%.

Controlled Cortical Impact (CCI) Injury

A CCI device (eCCI Model 6.3; Custom Design, Richmond, VA) was used to administer 

unilateral brain injury as described previously [11]. Rats were anesthetized with 4% 

isoflurane and a 1:1 mixture of N2O/O2 and the head was mounted in a stereotaxic frame. 

The head was held in a horizontal plane; a midline incision was used for exposure, and a 7- 

to 8-mm craniectomy was performed on the right cranial vault. The center of the 

craniectomy was placed at the midpoint between bregma and lambda, ~3 mm lateral to the 

midline, overlying the tempoparietal cortex. Animals received a single impact of 3.1 mm 

depth of deformation with an impact velocity of 6 m/s and a dwell time of 150 ms 

(moderate-severe injury) at an angle of 10° from the vertical plane using a 6-mm-diameter 

impact tip, making the impact orthogonal to the surface of the cortex. An audible baseline 

monitor was used to ensure that the location of the tip, relative to the surface of the brain, 

was consistent prior to each impact. The impact was delivered onto the parietal association 

cortex. Sham injury was performed by anesthetizing the animals, making the midline 

incision, and separating the skin, connective tissue, and aponeurosis from the cranium, 

before closing the incision. The body temperature was maintained at 37°C by the use of a 

heating pad. Previously obtained serial arterial PaO2 and PaCO2 have shown that animals do 

not become hypoxic or hypercarbic during this procedure.

Preparation and Intracerebral Placement of Cells

After expansion per protocol, cells were collected as neurospheres, gently titurated to break 

cell groups into single-cell suspensions, and suspended in the phosphate-buffered saline 

(PBS) vehicle. Cells were checked for viability via Trypan blue exclusion and counted using 

a hemocytometer. NSCs were then suspended at a concentration of 8000 c/μL. Immediately 

prior to intracerebral cell placement, the cells were titurated gently 8–10 times to ensure a 

homogeneous mixture of cells.

Seven d after CCI, rats were again anesthetized as above and the head was mounted in a 

stereotaxic frame. The midline incision was opened and the injured brain was exposed. A 

25-gauge microinjection needle was used to stereotactically guide the placement of the cells 

in the area of injury and the penumbral area (Fig. 1). At all 10 injection sites, 5 μL PBS 

containing 40,000 NSCs was injected over 10 s at 2–3 mm below the cortex, for a total 

placement of 400,000 NSCs per treatment animal. Sham treatment animals underwent 

identical procedures, with the injections only consisting of the PBS vehicle (see experiment 

flowchart, Fig. 2).

Immunohistochemistry of Brain Tissue

At 2 d and 2 wk following intracerebral cell placement of 400,000 NSCs, coronal brain 

sections were obtained for immunohistochemistry analysis. After intraperitoneal ketamine 
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injections, the thoracic cavity was opened and room-temperature PBS was infused for 15 

min via the left ventricle. The heart was spontaneously beating on initiation of infusion and 

the animals were simultaneously allowed to exsanguinate via right atrium puncture. Cold 

4% paraformaldehyde was then perfused for 15 min via the left ventricle. The brain was 

extracted and placed in 4% paraformaldehyde at 4°C for 24–48 h. The brain was embedded 

in 3% agarose, sectioned at 50 μM in the coronal plane using a vibrating-blade microtome 

(Leica Microsystems; Bannockburn, IL), stained with 4′,6-diamidino-2-phenylindole, 

dilactate (Invitrogen), and placed on a slide. Two sections from the anterior penumbra, 

anterior injury, central injury, posterior injury, and posterior penumbra areas of each brain 

were viewed by 2 members of the research team. Cells per coronal section were counted and 

the counts were averaged and extrapolated to the entire injury area (8 mm) and brain. All 

sections were viewed on a Nikon inverted fluorescent microscope (Model TE-2000-U; 

Nikon Inc., Melville, NY).

Behavioral Training and Testing

All members of the research team involved in behavioral experimentation were blinded to 

the experimental groups. Cells were placed intracerebrally 7 d after CCI injury. Rats were 

divided into 3 groups (n = 6 rats/group): (1) Sham injury; (2) CCI + intracerebral vehicle 

placement; (3) CCI + intracerebral placement of 400,000 NSCs (see experiment flowchart, 

Fig. 2).

Motor, Strength, and Reflex Tasks—Rotarod, Neurological Severity Score, Balance Beam, 
and Foot Fault

Beginning d 1 after NSC placement, an accelerating rotarod was used to measure motor 

balance and coordination. The rotarod consisted of a rotating spindle (diameter, 10 cm). All 

animals were tested using 3 trials per day at d 1–5 after NSC placement. Velocity of the rod 

was started at 15 rpm and increased 3 rpm every 5 s. Maximum speed maintained prior to 

failure (fall or inability to stay on the top of the rod) was recorded.

A neurological severity score was determined on d 1–5 after NSC placement. Points are 

assigned for alterations of motor, behavior, and reflex so that the maximal score of 14 

represents severe neurological dysfunction, while a score of 0 indicates normal, intact 

neurological function. The indices that comprise the neurological severity score have been 

described in detail previously [12, 13].

The ability to balance on a balance beam was assessed on d 1–5 after NSC placement. 

Animals were placed on a 1.5-cm-wide beam for 60 s or until they fell. Three trials per day 

were completed.

The ability to traverse chicken wire was also assessed on d 1–5 after NSC placement. 

Animals were placed on a chicken wire path 10 cm wide by 5 feet long and left rear foot 

faults were counted over 50 steps. Three trials per day were completed.
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Cognitive Task—Morris Water Maze (Learning Paradigm)

Two wk (early) and 10 wk (late) after injury (1 wk and 9 wk after NSC placement), animals 

were tested in a hidden platform, learning paradigm [12] version of the Morris water maze 

task [14, 15]. Animals were tested using 4 trials per day, over 5 consecutive days. Each trial 

was initiated by placing the animal in 1 of 4 randomly chosen locations, facing the wall of 

the tank. Animals were allowed to search for the hidden platform for a period of 60 s. If an 

animal failed to find the platform, the animal was placed there by the experimenter and 

allowed to remain on the platform for a period of 30 s before being returned to a warming 

cage for 4 min between trials. For each trial, movement within the maze was monitored by a 

video camera linked to tracking software (Chromotrack; San Diego Instruments, San Diego, 

CA). The latency to platform was calculated as the time necessary to locate the hidden 

platform. Using the tracking software, we also calculated time spent in the area near the 

platform and the time spent circle swimming.

Statistical Analysis

Differences in behavioral testing were assessed by repeated measures analysis of variance 

with post-hoc Tukey–Kramer analysis. All data are shown as mean ± SEM.

RESULTS

Flow Cytometry Characterization of NSCs

Flow cytometric analysis confirmed that the NSCs were Nestin positive (Fig. 3). Small 

percentages of cells were also found to express GFAP (astroglial cells) and CNPase 

(oligodendrocytes and oligodendroglial progenitors).

Immunohistochemistry of Brain Sections after NSC Placement

Immunohistochemistry analysis revealed that 1.4–1.9% of infused cells remained in the 

neural tissue at 48 h and at 2 wk post placement (Fig. 4). Nearly all cells were located along 

injection tracks at 48 h. There was an average of 1.3 cell clusters per brain section with 

54.38 ± 16.7 cells per cluster. Extrapolated to a 1 cm length, there were 7560 NSCs (1.9%) 

present 48 h after injection. At 2 wk some cell dispersion was apparent. There were 3.44 cell 

clusters per brain section with 31.13 ± 8.71 cells per cluster after 2 wk. Extrapolated to a 1 

cm length, there were 5680 NSCs (1.4%) present. Most of the cells were found in the 

perilesional cortex. Less than 5% of the intracerebral cells were identified in the 

hippocampus. Cell differentiation and in vivo immunophenotype were not evaluated.

Motor and Cognitive Behavioral Testing

Rotarod motor testing revealed significant increases in maximal speed among NSC-treated 

rats compared with saline controls at d 4 (36.4 versus 27.1 rpm, P < 0.05) and 5 (35.8 versus 

28.9 rpm, P < 0.05) (Fig. 5). All other motor, as well as early and late cognitive evaluations 

(Figs. 6 and 7), revealed no significant differences compared to control animals.
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DISCUSSION

We have shown that intracerebral rat neural stem cell placement 7 d after a moderate TBI 

can improve motor but does not appear to improve cognitive function recovery. The cells 

appear to remain in the brain at 2 and 14 d after placement. The timing of placement may be 

an important factor in cell survival and may improve cell survival and motor recovery.

Previous work has shown that acute NSC transplantation may help recovery after TBI. Fetal 

rodent cortical tissues were first isolated and transplanted into the injured cortical areas of 

adult rats 24 h after a fluid percussion injury by Sinson and colleagues [5]. Significant cell 

transplant survival, interaction between the transplanted cells and the injured brain, along 

with significant improvements in motor and cognitive function were reported. Subsequent 

work has confirmed that acute intracerebral placement of various neural progenitor cell 

populations improves functional recovery [6, 16]. Recently, primed fetal human neural stem 

cells transplanted intracerebrally 24 h after a TBI survive in the brain, secrete significant 

amounts of GDNF, and mediated improved cognitive function recovery [8]. Their NSCs 

were placed directly into the hippocampus, resulting in improvements in hippocampal-

dependent function.

Delayed or subacute transplantation of certain neural stem cell populations has also shown 

promising results. Transplantation of neural progenitor cells (derived from E14.5 mice) into 

the striatum 7 d after a cortical impact injury led to improved motor and cognitive function 

recovery that was sustained up to a year after transplantation [17]. The transplanted cells 

were noted throughout the hippocampus and the cortex adjacent to the injury. Neural stem 

cells (again derived from E14.5 mice) transplanted 1 wk after cortical impact injury were 

shown to survive and proliferate when transplanted with a fibronectin-based scaffold [18]. 

They concluded that the environment and the location of cell transplantation play an 

important role in cell survival and migration. Additionally, human adult neurons were 

intracerebrally transplanted into rodent brains 1 mo after a fluid percussion injury and were 

found to survive, although the rate of survival was not quantified nor was any functional 

recovery identified [19].

The details of cell delivery are critical when discussing cell therapy. Protocol variations such 

as vehicle volume, vehicle type, injection location, injection speed, and needle withdrawal 

can alter cell delivery significantly, although there is no consensus on the optimal 

conditions. Smaller vehicle volumes cause less damage on infusion but may not maintain the 

cells in a single cell suspension. We chose PBS as the vehicle because of its physiological 

compatibility, but thicker matrices or gels could improve cell survival/engraftment. We 

chose our injection strategy to deliver cells to the penumbral area, while minimizing 

injection locations to minimize the damage from the delivery itself. We injected the cells at 

approximately 1 μL per second and withdrew the needle over 3–5 s each time.

We specifically evaluated subacute therapy of adult, subventricular zone derived neural stem 

cells for several reasons. Adult-derived neural stem cells may be more accessible than 

embrionically derived cells, given current political pressures and concerns about transplant 

cell rejection, and they are easier to expand than adult neurons. The acute, pro-inflammatory 
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response to TBI is an area of ongoing investigation [20, 21], and, although the inflammatory 

response has beneficial effects, it has been shown to have deleterious effects on native cells 

[22, 23] and transplanted cells [9, 10]. Molcanyi and coworkers found that embryonic stem 

cells transplanted into the injured cortex 72 h after fluid-percussion injury did not have a 

prolonged survival secondary to the highly pro-inflammatory milieu [10]. They found the 

observed transplanted cell loss to be mediated by activated macrophage phagocytosis of the 

cells. Although a hyperacute cell transplantation (<24 h after injury) strategy has shown cell 

survival and behavioral benefit [5-7, 16, 24], recent work is revealing that the acute, central 

nervous system proinflammatory microenvironment is suboptimal for survival of grafted 

cells [25]. We chose the 7-d time point because the optimal time window may be after the 

acute inflammatory cascade, including cytokine release, macrophage/microglia infiltration, 

and edema (which all appear to resolve around d 5–6 after injury), yet prior to glial scar 

formation (which is observed to begin forming around d 10–14) [25, 26].

We have shown that subacute intracerebral rat neural stem cell therapy can improve motor 

recovery. The NSCs appear to remain in the brain at 2 and 14 d. The subacute placement 

strategy may allow improved cell survival, as the acute, local intracerebral proinflammatory 

milieu may be suboptimal for cell survival. Continued investigation is necessary to optimize 

the delivery of cells to the traumatically injured brain.
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FIG. 1. 
Intracerebral placement of NSCs. The dashed circle represents the location of the 

craniotomy and the black dots are locations of NSC injection. At each injection site, 40,000 

NSCs in 5 μL of saline vehicle were injected 2–3 mm below the cortex surface. (Color 

version of figure is available online.)
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FIG. 2. 
Flowchart outlining the timing of the experiments.
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FIG. 3. 
Flow cytometric immunophenotyping of rat neural stem cells (rNSC). The rNSCs were 

immunophenotyped for the following receptors/proteins: Nestin, GFAP, β-tubulin III, 

CNPase and myelin basic protein (MBP). Cells were found to be Nestin-positive and mildly 

positive for GFAP and CNPase.
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FIG. 4. 
Immunohistochemistry of brain 48 h after CCI injury and rNSC placement. At 48 h after 

injury, numerous rNSCs are seen in the penumbral cortex. The nuclei are stained with 4′,6-

diamidino-2-phenylindole, dilactate (blue), and the rNSCs are stained with Qtracker 655 

(red). The insert shows an entire coronal section after Nissl staining, with a red box outlining 

an area similar to the magnified image. (Color version of figure is available online.)
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FIG. 5. 
Rotarod motor testing results. Rats were tested using 3 trials per day at d 8–12 (d 1–5 after 

NSC placement). Velocity of the rod was started at 15 rpm and increased 3 rpm every 5 s. 

Maximum speed (y-axis) maintained prior to failure (fall or inability to stay on the top of the 

rod) was recorded. On d 4 and 5, rats that received rNSCs were able to remain on the rotarod 

at a significantly increased speed relative to rats who received vehicle injection.
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FIG. 6. 
Neurological severity score (NSS) results. Rats were evaluated for global neurological 

function using the previously described NSS on d 8–12 (d 1–5 after NSC placement). No 

statistically significant differences were identified.
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FIG. 7. 
Morris water maze results. Two wk (early, A) and 10 wk (late, B) after injury (1 wk and 9 

wk after NSC placement), animals were tested in a hidden platform, learning a paradigm 

version of the Morris water maze task. Animals were tested using 4 trials per day, with 

latency to the hidden platform (y-axis) recorded after each trial. No statistically significant 

differences were identified.
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