1,925 research outputs found

    Petrological Constraints on the Recycling of Mafic Crystal Mushes and Intrusion of Braided Sills in the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    Cumulate and crystal mush disruption and reactivation are difficult to recognize in coarse-grained, shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. This study presents the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its subvertical feeder zone. We summarize a number of observations that occur in structurally different, shallow, plutonic rocks, as follows. (1) The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine-grained monzodiorite sills. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ∼300 to ∼400 MPa. The corresponding rims and monzodiorite matrix crystallized at 950°C) than estimated from the composition of the granite minimum. We show that hornblende-plagioclase thermobarometry is a useful monitor for the determination of the segregation conditions of granitic magmas from gabbroic crystal mushes, and for monitoring the evolution of shallow crustal magmatic crystallization, decompression and coolin

    Petrological Constraints on the Recycling of Mafic Crystal Mushes and Intrusion of Braided Sills in the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    Cumulate and crystal mush disruption and reactivation are difficult to recognize in coarse-grained, shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. This study presents the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its subvertical feeder zone. We summarize a number of observations that occur in structurally different, shallow, plutonic rocks, as follows. (1) The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine-grained monzodiorite sills. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ∼300 to ∼400 MPa. The corresponding rims and monzodiorite matrix crystallized at <830°C, ∼70 MPa. This abrupt compositional variation suggests stability and instability of hornblende during recycling of the mafic roots of the complex and subsequent decompression. (2) The near lack of intercumulus crystals in the subvertical feeder zone layered gabbronorite and pyroxene–hornblende gabbronorite stocks testifies that melt is more efficiently extracted than in sills, resulting in a cumulate signature in the feeding system. Granitic liquids were extracted at a higher temperature (T >950°C) than estimated from the composition of the granite minimum. We show that hornblende–plagioclase thermobarometry is a useful monitor for the determination of the segregation conditions of granitic magmas from gabbroic crystal mushes, and for monitoring the evolution of shallow crustal magmatic crystallization, decompression and cooling

    A Detailed Geochemical Study of a Shallow Arc-related Laccolith; the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    The shallow crustal Torres del Paine Intrusive Complex in southern Patagonia offers an opportunity to understand the chemical evolution and timing of crystallization processes in shallow plutonic rocks. It is characterized by hornblende-gabbros, gabbronorites, monzodiorites and granitic plutonic rocks. The exceptional exposure of the intrusion permits the identification of two structurally and petrographically different zones. Layered gabbronorite, olivine-bearing pyroxene-hornblende gabbronorite and monzodiorite forming vertical sheets and stocks in the west are referred to here as the feeder zone. These mafic rocks are in vertical contact with younger granitic rocks on their eastern border. The eastern part is a laccolith complex. It is characterized by three major units (I, II, III) of granitic rocks of over 1000 m vertical thickness; these are underlain in places by a sequence of hornblende-gabbro sills intermingled with evolved monzodiorite granite. Chilled, crenulated margins as well as flame structures between gabbroic rocks and monzodiorites suggest that the mafic sill complex remained partially molten during most of its construction. Bulk-rock major and trace element data indicate that the Paine mafic rocks follow a high-K calc-alkaline to shoshonitic differentiation trend. The parental magmas were basaltic trachyandesite liquids, with variable H2O and alkali contents. The majority of the feeder zone gabbronorites have high Al2O3 contents and positive Eu and Sr anomalies, consistent with accumulation of plagioclase and efficient extraction of intercumulus melt. The mafic sill complex largely lacks these cumulate signatures. Comparisons of the intercumulus groundmass in the hornblende-gabbros with intra-sill dioritic stocks and pods reveal similar rare earth element patterns and trace element ratios indicating incomplete extraction of evolved interstitial liquids. The Sr, Nd and Pb isotopic compositions of the mafic and granitic rocks exhibit ranges of 87Sr/86Sr of 0·704-0·708, εNd +3·8 to −1·2, 206Pb/204Pb 18·61-18·77, 207Pb/204Pb 15·67-15·67 and 208Pb/204Pb 38·56-38·77. Crystal fractionation and assimilation-fractional crystallization modelling, combined with high-precision U-Pb dating of zircons, indicates that the western feeder zone gabbronorites are linked to the uppermost Paine granite (granite I), whereas the mafic sill complex is younger and not directly related to the voluminous granite units II and III. These results are interpreted to indicate that crystal-liquid separation is facilitated in subvertical, dynamic feeder systems whereas subhorizontal sill complexes are inefficient in separating large volumes of mafic cumulates and complementary felsic rock

    Characterizing entanglement with geometric entanglement witnesses

    Full text link
    We show how to detect entangled, bound entangled, and separable bipartite quantum states of arbitrary dimension and mixedness using geometric entanglement witnesses. These witnesses are constructed using properties of the Hilbert-Schmidt geometry and can be shifted along parameterized lines. The involved conditions are simplified using Bloch decompositions of operators and states. As an example we determine the three different types of states for a family of two-qutrit states that is part of the "magic simplex", i.e. the set of Bell-state mixtures of arbitrary dimension.Comment: 19 pages, 4 figures, some typos and notational errors corrected. To be published in J. Phys. A: Math. Theo
    corecore