5,248 research outputs found
Hierarchic Superposition Revisited
Many applications of automated deduction require reasoning in first-order
logic modulo background theories, in particular some form of integer
arithmetic. A major unsolved research challenge is to design theorem provers
that are "reasonably complete" even in the presence of free function symbols
ranging into a background theory sort. The hierarchic superposition calculus of
Bachmair, Ganzinger, and Waldmann already supports such symbols, but, as we
demonstrate, not optimally. This paper aims to rectify the situation by
introducing a novel form of clause abstraction, a core component in the
hierarchic superposition calculus for transforming clauses into a form needed
for internal operation. We argue for the benefits of the resulting calculus and
provide two new completeness results: one for the fragment where all
background-sorted terms are ground and another one for a special case of linear
(integer or rational) arithmetic as a background theory
A Tableaux Calculus for Reducing Proof Size
A tableau calculus is proposed, based on a compressed representation of
clauses, where literals sharing a similar shape may be merged. The inferences
applied on these literals are fused when possible, which reduces the size of
the proof. It is shown that the obtained proof procedure is sound,
refutationally complete and allows to reduce the size of the tableau by an
exponential factor. The approach is compatible with all usual refinements of
tableaux.Comment: Technical Repor
Real-space imaging of quantum Hall effect edge strips
We use dynamic scanning capacitance microscopy (DSCM) to image compressible
and incompressible strips at the edge of a Hall bar in a two-dimensional
electron gas (2DEG) in the quantum Hall effect (QHE) regime. This method gives
access to the complex local conductance, Gts, between a sharp metallic tip
scanned across the sample surface and ground, comprising the complex sample
conductance. Near integer filling factors we observe a bright stripe along the
sample edge in the imaginary part of Gts. The simultaneously recorded real part
exhibits a sharp peak at the boundary between the sample interior and the
stripe observed in the imaginary part. The features are periodic in the inverse
magnetic field and consistent with compressible and incompressible strips
forming at the sample edge. For currents larger than the critical current of
the QHE break-down the stripes vanish sharply and a homogeneous signal is
recovered, similar to zero magnetic field. Our experiments directly illustrate
the formation and a variety of properties of the conceptually important QHE
edge states at the physical edge of a 2DEG.Comment: 7 page
Scaling of polymers in aligned rods
We study the behavior of self avoiding polymers in a background of vertically
aligned rods that are either frozen into random positions or free to move
horizontally. We find that in both cases the polymer chains are highly
elongated, with vertical and horizontal size exponents that differ by a factor
of 3. Though these results are different than previous predictions, our results
are confirmed by detailed computer simulations.Comment: 4 pages, 4 figure
Intelligent Self-Repairable Web Wrappers
The amount of information available on the Web grows at an incredible high rate. Systems and procedures devised to extract these data from Web sources already exist, and different approaches and techniques have been investigated during the last years. On the one hand, reliable solutions should provide robust algorithms of Web data mining which could automatically face possible malfunctioning or failures. On the other, in literature there is a lack of solutions about the maintenance of these systems. Procedures that extract Web data may be strictly interconnected with the structure of the data source itself; thus, malfunctioning or acquisition of corrupted data could be caused, for example, by structural modifications of data sources brought by their owners. Nowadays, verification of data integrity and maintenance are mostly manually managed, in order to ensure that these systems work correctly and reliably. In this paper we propose a novel approach to create procedures able to extract data from Web sources -- the so called Web wrappers -- which can face possible malfunctioning caused by modifications of the structure of the data source, and can automatically repair themselves.\u
On the Performance Prediction of BLAS-based Tensor Contractions
Tensor operations are surging as the computational building blocks for a
variety of scientific simulations and the development of high-performance
kernels for such operations is known to be a challenging task. While for
operations on one- and two-dimensional tensors there exist standardized
interfaces and highly-optimized libraries (BLAS), for higher dimensional
tensors neither standards nor highly-tuned implementations exist yet. In this
paper, we consider contractions between two tensors of arbitrary dimensionality
and take on the challenge of generating high-performance implementations by
resorting to sequences of BLAS kernels. The approach consists in breaking the
contraction down into operations that only involve matrices or vectors. Since
in general there are many alternative ways of decomposing a contraction, we are
able to methodically derive a large family of algorithms. The main contribution
of this paper is a systematic methodology to accurately identify the fastest
algorithms in the bunch, without executing them. The goal is instead
accomplished with the help of a set of cache-aware micro-benchmarks for the
underlying BLAS kernels. The predictions we construct from such benchmarks
allow us to reliably single out the best-performing algorithms in a tiny
fraction of the time taken by the direct execution of the algorithms.Comment: Submitted to PMBS1
Social Media Use, Social Media Stress, and Sleep
There are concerns that social media (SM) use and SM stress may disrupt sleep. However, evidence on both the cross-sectional and longitudinal relationships is limited. Therefore, the main aim of this study is to address this gap in the literature by examining the cross-sectional and longitudinal relationships between SM use, SM stress, and sleep (i.e., sleep latency and daytime sleepiness) in adolescents. In total, 1,441 adolescents 11–15 years, 51% boys) filled out a survey in at least one of three waves that were three to four months apart (NWave1 = 1,241; NWave2 = 1,216; NWave3 = 1,103). Cross-sectionally, we found that SM use and SM stress were positively related to sleep latency and daytime sleepiness. However, when examined together, SM use was not a significant predictor of sleep latency and daytime sleepiness above the effects of SM stress. The longitudinal findings showed that SM stress was positively related to subsequent sleep latency and daytime sleepiness, but only among girls. Our findings stress that it is important to focus on how adolescents perceive and cope with their SM use, instead of focusing on the mere frequency of SM use
A differential method for bounding the ground state energy
For a wide class of Hamiltonians, a novel method to obtain lower and upper
bounds for the lowest energy is presented. Unlike perturbative or variational
techniques, this method does not involve the computation of any integral (a
normalisation factor or a matrix element). It just requires the determination
of the absolute minimum and maximum in the whole configuration space of the
local energy associated with a normalisable trial function (the calculation of
the norm is not needed). After a general introduction, the method is applied to
three non-integrable systems: the asymmetric annular billiard, the many-body
spinless Coulombian problem, the hydrogen atom in a constant and uniform
magnetic field. Being more sensitive than the variational methods to any local
perturbation of the trial function, this method can used to systematically
improve the energy bounds with a local skilled analysis; an algorithm relying
on this method can therefore be constructed and an explicit example for a
one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics
Replica field theory for a polymer in random media
In this paper we revisit the problem of a (non self-avoiding) polymer chain
in a random medium which was previously investigated by Edwards and Muthukumar
(EM). As noticed by Cates and Ball (CB) there is a discrepancy between the
predictions of the replica calculation of EM and the expectation that in an
infinite medium the quenched and annealed results should coincide (for a chain
that is free to move) and a long polymer should always collapse. CB argued that
only in a finite volume one might see a ``localization transition'' (or
crossover) from a stretched to a collapsed chain in three spatial dimensions.
Here we carry out the replica calculation in the presence of an additional
confining harmonic potential that mimics the effect of a finite volume. Using a
variational scheme with five variational parameters we derive analytically for
d<4 the result R~(g |ln \mu|)^{-1/(4-d)} ~(g lnV)^{-1/(4-d)}, where R is the
radius of gyration, g is the strength of the disorder, \mu is the spring
constant associated with the confining potential and V is the associated
effective volume of the system. Thus the EM result is recovered with their
constant replaced by ln(V) as argued by CB. We see that in the strict infinite
volume limit the polymer always collapses, but for finite volume a transition
from a stretched to a collapsed form might be observed as a function of the
strength of the disorder. For d<2 and for large
V>V'~exp[g^(2/(2-d))L^((4-d)/(2-d))] the annealed results are recovered and
R~(Lg)^(1/(d-2)), where L is the length of the polymer. Hence the polymer also
collapses in the large L limit. The 1-step replica symmetry breaking solution
is crucial for obtaining the above results.Comment: Revtex, 32 page
Solvable model of a polymer in random media with long ranged disorder correlations
We present an exactly solvable model of a Gaussian (flexible) polymer chain
in a quenched random medium. This is the case when the random medium obeys very
long range quadratic correlations. The model is solved in spatial
dimensions using the replica method, and practically all the physical
properties of the chain can be found. In particular the difference between the
behavior of a chain that is free to move and a chain with one end fixed is
elucidated. The interesting finding is that a chain that is free to move in a
quadratically correlated random potential behaves like a free chain with , where is the end to end distance and is the length of the
chain, whereas for a chain anchored at one end . The exact
results are found to agree with an alternative numerical solution in
dimensions. The crossover from long ranged to short ranged correlations of the
disorder is also explored.Comment: REVTeX, 28 pages, 12 figures in eps forma
- …