1,731 research outputs found

    Intensity limits of the PSI Injector II cyclotron

    Full text link
    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ~ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted

    Transverse-Longitudinal Coupling by Space Charge in Cyclotrons

    Get PDF
    A method is presented that enables to compute the parameters of matched beams with space charge in cyclotrons with emphasis on the effect of the transverse-longitudinal coupling. Equations describing the transverse-longitudinal coupling and corresponding tune-shifts in first order are derived for the model of an azimuthally symmetric cyclotron. The eigenellipsoid of the beam is calculated and the transfer matrix is transformed into block-diagonal form. The influence of the slope of the phase curve on the transverse-longitudinal coupling is accounted for. The results are generalized and numerical procedures for the case of an AVF cyclotron are presented. The algorithm is applied to the PSI Injector II and Ring cyclotron and the results are compared to TRANSPORT.Comment: 8 pages, 2 figure

    A Geometrical Method of Decoupling

    Full text link
    The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries - like midplane symmetrie - are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as for instance the method of Teng and Edwards. In a preceeding paper it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all thinkable cases. Hence a systematic derivation of a more general treatment seemed advisable. In a second paper the author suggested the use of real Dirac matrices as basic tools to coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. It is shown that this algebraic decoupling is closely related to a geometric "decoupling" by the orthogonalization of the vectors E\vec E, B\vec B and P\vec P, that were introduced with the so-called "electromechanical equivalence". We present a structure-preserving block-diagonalization of symplectic or Hamiltonian matrices, respectively. When used iteratively, the decoupling algorithm can also be applied to n-dimensional systems and requires O(n2){\cal O}(n^2) iterations to converge to a given precision.Comment: 13 pages, 1 figur

    Recent developments for beam intensity increase operation

    Get PDF
    International audienceThe aim of the beam intensity increase operation (THI project) is to multiply the present intensities for lightest ions by a factor of fifteen in order to reach maximum power of six kilowatts [1]. The main objective is the production of large amounts of rare isotopes, either with SISSI (device intended for producing radioactive beams), or with SPIRAL (production and acceleration of radioactive ion beams). As part of this THI project, new developments have been required such as spiral scanners, for beanl profile measurements, and safety system to protect equipments against beam losses. Other developments are being carried on to improve the high intensity beam operation

    Systemically Administered Ligands of Toll-Like Receptor 2, -4, and -9 Induce Distinct Inflammatory Responses in the Murine Lung

    Get PDF
    Objective. To determine whether systemically administered TLR ligands differentially modulate pulmonary inflammation. Methods. Equipotent doses of LPS (20 mg/kg), CpG-ODN (1668-thioat 1 nmol/g), or LTA (15 mg/kg) were determined via TNF activity assay. C57BL/6 mice were challenged intraperitoneally. Pulmonary NFκB activation (2 h) and gene expression/activity of key inflammatory mediators (4 h) were monitored. Results. All TLR ligands induced NFκB. LPS increased the expression of TLR2, 6, and the cytokines IL-1αβ, TNF-α, IL-6, and IL-12p35/p40, CpG-ODN raised TLR6, TNF-α, and IL12p40. LTA had no effect. Additionally, LPS increased the chemokines MIP-1α/β, MIP-2, TCA-3, eotaxin, and IP-10, while CpG-ODN and LTA did not. Myeloperoxidase activity was highest after LPS stimulation. MMP1, 3, 8, and 9 were upregulated by LPS, MMP2, 8 by CpG-ODN and MMP2 and 9 by LTA. TIMPs were induced only by LPS. MMP-2/-9 induction correlated with their zymographic activities. Conclusion. Pulmonary susceptibility to systemic inflammation was highest after LPS, intermediate after CpG-ODN, and lowest after LTA challenge

    European Research on Magnetic Nanoparticles for Biomedical Applications: Standardisation Aspects

    Get PDF
    Magnetic nanoparticles have many applications in biomedicine and other technical areas. Despite their huge economic impact, there are no standardised procedures available to measure their basic magnetic properties. The International Organization for Standardization is working on a series of documents on the definition of characteristics of magnetic nanomaterials. We review previous and ongoing European research projects on characteristics of magnetic nanoparticles and present results of an online survey among European researchers

    Gill Function in an Elasmobranch

    Get PDF
    Highly efficient oxygen uptake in elasmobranchs, as indicated by frequent excess of PaO2 over PEO2 has previously been ascribed to the operation of multicapillary rather than counter-current gas exchange by the gills. Analysis of models shows that, at maximum efficiency, a multicapillary system cannot account for values of PaO2 greater than (PIO2+PEO2)/2. In Port Jackson sharks Heterodontus portusjacksoni) PaO2 commonly exceeds (PIO2+PEO2)/2, which indicates the operation of a functional counter-current at the respiratory surface. The anatomical basis of this counter-current is provided by the demonstration that a continuous flow of water passes between the secondary lamellae into septal canals and thence via the parabranchial cavities to the exterior
    corecore