1,355 research outputs found
Systematic Improvement of Parton Showers with Effective Theory
We carry out a systematic classification and computation of next-to-leading
order kinematic power corrections to the fully differential cross section in
the parton shower. To do this we devise a map between ingredients in a parton
shower and operators in a traditional effective field theory framework using a
chain of soft-collinear effective theories. Our approach overcomes several
difficulties including avoiding double counting and distinguishing
approximations that are coordinate choices from true power corrections.
Branching corrections can be classified as hard-scattering, that occur near the
top of the shower, and jet-structure, that can occur at any point inside it.
Hard-scattering corrections include matrix elements with additional hard
partons, as well as power suppressed contributions to the branching for the
leading jet. Jet-structure corrections require simultaneous consideration of
potential 1 -> 2 and 1 -> 3 branchings. The interference structure induced by
collinear terms with subleading powers remains localized in the shower.Comment: 54 pages, 24 figures, plus a few appendices. v2: included a parameter
"eta" to account for energy loss, title improved, journal versio
PAMELA, DAMA, INTEGRAL and Signatures of Metastable Excited WIMPs
Models of dark matter with ~ GeV scale force mediators provide attractive
explanations of many high energy anomalies, including PAMELA, ATIC, and the
WMAP haze. At the same time, by exploiting the ~ MeV scale excited states that
are automatically present in such theories, these models naturally explain the
DAMA/LIBRA and INTEGRAL signals through the inelastic dark matter (iDM) and
exciting dark matter (XDM) scenarios, respectively. Interestingly, with only
weak kinetic mixing to hypercharge to mediate decays, the lifetime of excited
states with delta < 2 m_e is longer than the age of the universe. The
fractional relic abundance of these excited states depends on the temperature
of kinetic decoupling, but can be appreciable. There could easily be other
mechanisms for rapid decay, but the consequences of such long-lived states are
intriguing. We find that CDMS constrains the fractional relic population of
~100 keV states to be <~ 10^-2, for a 1 TeV WIMP with sigma_n = 10^-40 cm^2.
Upcoming searches at CDMS, as well as xenon, silicon, and argon targets, can
push this limit significantly lower. We also consider the possibility that the
DAMA excitation occurs from a metastable state into the XDM state, which decays
via e+e- emission, which allows lighter states to explain the INTEGRAL signal
due to the small kinetic energies required. Such models yield dramatic signals
from down-scattering, with spectra peaking at high energies, sometimes as high
as ~1 MeV, well outside the usual search windows. Such signals would be visible
at future Ar and Si experiments, and may be visible at Ge and Xe experiments.
We also consider other XDM models involving ~ 500 keV metastable states, and
find they can allow lighter WIMPs to explain INTEGRAL as well.Comment: 22 pages, 7 figure
The state of peer-to-peer network simulators
Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results
Decaying Hidden Dark Matter in Warped Compactification
The recent PAMELA and ATIC/Fermi/HESS experiments have observed an excess of
electrons and positrons, but not anti-protons, in the high energy cosmic rays.
To explain this result, we construct a decaying hidden dark matter model in
string theory compactification that incorporates the following two ingredients,
the hidden dark matter scenario in warped compactification and the
phenomenological proposal of hidden light particles that decay to the Standard
Model. In this model, on higher dimensional warped branes, various warped
Kaluza-Klein particles and the zero-mode of gauge field play roles of the
hidden dark matter or mediators to the Standard Model.Comment: 15 pages; v4, several clarifications added, update on Fermi/HESS
result
Quantum Gates and Memory using Microwave Dressed States
Trapped atomic ions have been successfully used for demonstrating basic
elements of universal quantum information processing (QIP). Nevertheless,
scaling up of these methods and techniques to achieve large scale universal
QIP, or more specialized quantum simulations remains challenging. The use of
easily controllable and stable microwave sources instead of complex laser
systems on the other hand promises to remove obstacles to scalability.
Important remaining drawbacks in this approach are the use of magnetic field
sensitive states, which shorten coherence times considerably, and the
requirement to create large stable magnetic field gradients. Here, we present
theoretically a novel approach based on dressing magnetic field sensitive
states with microwave fields which addresses both issues and permits fast
quantum logic. We experimentally demonstrate basic building blocks of this
scheme to show that these dressed states are long-lived and coherence times are
increased by more than two orders of magnitude compared to bare magnetic field
sensitive states. This changes decisively the prospect of microwave-driven ion
trap QIP and offers a new route to extend coherence times for all systems that
suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or
circuit-QED systems.Comment: 9 pages, 4 figure
The Dark Side of the Electroweak Phase Transition
Recent data from cosmic ray experiments may be explained by a new GeV scale
of physics. In addition the fine-tuning of supersymmetric models may be
alleviated by new O(GeV) states into which the Higgs boson could decay. The
presence of these new, light states can affect early universe cosmology. We
explore the consequences of a light (~ GeV) scalar on the electroweak phase
transition. We find that trilinear interactions between the light state and the
Higgs can allow a first order electroweak phase transition and a Higgs mass
consistent with experimental bounds, which may allow electroweak baryogenesis
to explain the cosmological baryon asymmetry. We show, within the context of a
specific supersymmetric model, how the physics responsible for the first order
phase transition may also be responsible for the recent cosmic ray excesses of
PAMELA, FERMI etc. We consider the production of gravity waves from this
transition and the possible detectability at LISA and BBO
An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung
Two effects, jet broadening and gluon bremsstrahlung induced by the
propagation of a highly energetic quark in dense QCD matter, are reconsidered
from effective theory point of view. We modify the standard Soft Collinear
Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed
to implement the interactions between the medium and the collinear fields. We
derive the Feynman rules for this Lagrangian and show that it is invariant
under soft and collinear gauge transformations. We find that the newly
constructed theory SCET recovers exactly the general result for the
transverse momentum broadening of jets. In the limit where the radiated gluons
are significantly less energetic than the parent quark, we obtain a jet
energy-loss kernel identical to the one discussed in the reaction operator
approach to parton propagation in matter. In the framework of SCET we
present results for the fully-differential bremsstrahlung spectrum for both the
incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the
soft-gluon approximation. Gauge invariance of the physics results is
demonstrated explicitly by performing the calculations in both the light-cone
and covariant gauges. We also show how the process-dependent
medium-induced radiative corrections factorize from the jet production cross
section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE
Non-Abelian Dark Sectors and Their Collider Signatures
Motivated by the recent proliferation of observed astrophysical anomalies,
Arkani-Hamed et al. have proposed a model in which dark matter is charged under
a non-abelian "dark" gauge symmetry that is broken at ~ 1 GeV. In this paper,
we present a survey of concrete models realizing such a scenario, followed by a
largely model-independent study of collider phenomenology relevant to the
Tevatron and the LHC. We address some model building issues that are easily
surmounted to accommodate the astrophysics. While SUSY is not necessary, we
argue that it is theoretically well-motivated because the GeV scale is
automatically generated. Specifically, we propose a novel mechanism by which
mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs
mechanism precisely at a GeV. Furthermore, we elaborate on the original
proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of
gauge mediation to the dark sector. In our collider analysis we present
cross-sections for dominant production channels and lifetime estimates for
primary decay modes. We find that dark gauge bosons can be produced at the
Tevatron and the LHC, either through a process analogous to prompt photon
production or through a rare Z decay channel. Dark gauge bosons will decay back
to the SM via "lepton jets" which typically contain >2 and as many as 8
leptons, significantly improving their discovery potential. Since SUSY decays
from the MSSM will eventually cascade down to these lepton jets, the discovery
potential for direct electroweak-ino production may also be improved.
Exploiting the unique kinematics, we find that it is possible to reconstruct
the mass of the MSSM LSP. We also present decay channels with displaced
vertices and multiple leptons with partially correlated impact parameters.Comment: 44 pages, 25 figures, version published in JHE
- …
