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Abstract Modal analysis has been used to identify natural frequencies, damp-
ing characteristics and mode shapes of wind turbine blades.

Different experimental procedures have been considered and the most appropri-
ate of these has been selected. Although the comparison is based on measurements
on a LM19 m blade, the recommendations given are believed to be valid for other
types of wind turbine blades as well.

The reliability of the selected experimental analysis has been quantified by es-
timating the wunsystematic variations in the experimental findings. Satisfactory
results have been obtained for natural frequencies, damping characteristics and
for the dominating deflection direction of the investigated mode shapes. For non-
dominating deflection directions of the investigated mode shapes, however, the
observed experimental uncertainty may be considerable — especially for the tor-
sional deflection.

The experimental analysis of the LM19 m blade has been compared with results
from a FE-modeling of the same blade. For some of the higher modes substantial
discrepancies between the natural frequencies originating from the FE-modeling
and the modal analysis, respectively, are observed. Comparing the mode shapes
(normalized with respect to the tip deflection in the dominating deflection di-
rection) good agreement has been demonstrated for the dominating deflection
direction. For the non-dominating deflection directions, the qualitative features
(i.e. the shape) of measured and computed modes shapes are in good agreement,
whereas they quantitatively may display considerable deviations.

Finally, suggestions of potential future improvements of the experimental pro-
cedure are discussed.
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1 Introduction

As part of the certification procedure, all wind turbine blade prototypes are sub-
jected to an experimental test procedure in order to ensure that the produced wind
turbine blade fulfill the actual design requirements. In addition to experimental
tests of load carrying capacity under extreme loading, and tests of the fatigue
resistance, it is common practice to supplement with tests of the basic dynamic
properties of the blades, such as natural frequencies and damping properties, as
these are essential for the dynamic behaviour and structural integrity of the entire
wind turbine. Usually, these dynamic characteristics are determined for the lowest
3-4 flexural bending modes and for the first torsional mode.

However, detailed knowledge to natural frequencies and structural damping
characteristics does not by itself guarantee/ensure an optimal dynamic behaviour
of the wind turbine when subjected to aerodynamic forces arising from the im-
posed wind field. In resent years, stability problems in wind turbine structures
have obtained increasing attention due to the trend towards larger and more flexi-
ble structures. A well known example of a stability problem, that eventually might
lead to failure of the whole structure, is the occurrence of dynamic unstable edge-
wise vibrations. For aerodynamic loading in general!, and for dynamic stability
problems in particular, the deflection patterns of the wind turbine blades are of
vital importance. For a wind turbine blade, the deflections of interest are lateral
translations (flapwise, edgewise) and cord rotation (about the blades longitudinal
axis).

For reasons of simplicity it is common practice to model wind turbine com-
ponents as beam structures in aeroelastic computations. Warping is usually ne-
glected, justified by the fact that the main components are structures with closed
cross sections, whereas the structural couplings between flexural bending in the
two principal directions and structural couplings between torsion and flexural
bending are usually included, as such structural couplings may significantly af-
fect the aerodynamic load characteristics of a wind turbine blade. Although, in
principle included in the traditional Euler or Timoshenko beam modeling of wind
turbine blades, the correct specification of such structural couplings is a delicate
matter.

For the verification of structural models, it is therefore of interest to extend the
traditional dynamic test procedures with new experimental methods suitable for
determination of structurally coupled mode shapes. The present report describes
a test procedure that, in addition to determination of natural frequencies and
structural damping characteristics, also provide such information.

Modal analysis is by far the most common method used to characterize the
dynamics of mechanical systems, and it produces very illustrative and easy in-
terpretable results. The selected experimental procedure is based on the impact
modal testing technique.

The specific experimental procedure is designed as to (simultaneously) resolve
flapwise translation, edgewise translation and cord rotation in a selected number
of cross sections. These deformations are determined with respect to a predefined
reference axis based on three measured translational accelerations in each cross
section. The positions and directions of action of the three accelerometers are
chosen appropriately.

An interest for internal blade structural mechanics, as well as for experimen-
tal modal analysis, has existed since the early prototypes of large wind turbines.

IThe aerodynamic loading (and damping) is intimately associated with the angle of attack
of the incoming flow on the turbine blade — a fact that makes the structural coupling between
blade flexture and torsion a matter of utmost importance.
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The 38 m, filament-wound glass/epoxy blade, designed for the research prototype
WTS-3 (Maglarp, Sweden), was subjected to an extensive dynamic test program
before delivery. The blade was designed and manufactured by Hamilton Standard,
and the tests were conducted in 1981. A ”full” experimental modal analysis was
performed [7] using a hydraulic shaker (white noise, two directions at one blade
station) and several accelerometers, measuring one edgewise and two flapwise ac-
clerations, at each of about 20 blade stations. The evaluated frequency response
functions were then subsequently compared with the corresponding results from
a 3D shell element FE-model. The dynamic characteristics corresponding to the
seven lowest natural frequencies were analysed.

Modal analysis has also been used to identify approximate mode shapes, asso-
ciated with the the dominating deflection direction only (i.e. mode shapes exclud-
ing structural coupling between torsion, flapwise and edgewise deformations), of
medium size wind turbine blades (LM17 m and LM19 m) [8]. The approximate
modes, related to the three lowest natural frequencies, were successfully identified
based on the transfer function between a sinusoidal forcing applied in the blade
tip and an accelerometer response recorded successively in up to 68 blade stations.

Compared to the previous work, the present experimental investigation aims at
comparing different experimental modal analysis techniques and subsequently to
identify the most appropriate of these considering expenses, time consumption,
uncertainty and resolution.

The report is structured as follows: Chapter 2 gives the theoretical background
for the modal analysis method. In Chapter 3 follows then a description of the ex-
perimental considerations and cognitions, which are eventually summarized in a
recommended experimental procedure. The results obtained, applying the recom-
mended experimental procedure on a LM 19 m blade, are presented and discussed
in Chapter 4. Finally, a conclusion on the findings from the study, together with
recommendations for potential future refinements of the technique, are contained
in Chapter 5.
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2 Theory of modal analysis

This chapter deals with the theory of the modal analysis procedure used in the
following experiments with wind turbine blades. The aim is to give an overview of
this theory and to explain some of the experimental tasks related to the theory.
Two different issues are discussed. First, the choice of three degrees of freedom
in each cross-section to describe the motion of the blade. Second, the extraction
of mode shapes, natural frequencies, and damping from measurements of transfer
characteristics of the blade.

2.1 Discrete blade motion

In an experiment it is not possible to measure the motion of all material points
of the wind turbine blade. Instead the motion is discretized. A finite number of
degrees of freedom (DOFs) are used to describe the blade motion.

The mode shapes of a blade are assumed to be described by three functions of
the radius: flapwise and edgewise deflections, and torsion of the chord about the
pitch-axis (the axis from root to tip about which the collective pitch of the blade
is set). Each cross-section is assumed to undergo rigid body motion in a plane
perpendicular to the pitch-axis. To describe this rigid body motion only three
DOFs are necessary.

Figure 1 illustrates how a configuration of three DOFs could be chosen: Two
flapwise DOF's to describe flapwise deflection and torsion (denoted u, and 6), and
one edgewise DOF to describe the edgewise deflection (denoted u,). A rotational
DOF to describe torsion is not available in the following experiments and therefore
not considered here.

A DOF is characterized by a direction and a position. The directions and po-
sitions of the three DOF's in a cross-section is important to the description of its
rigid body motion. For some configurations of DOFs the determination of u,, u,,
and 6 may be very sensitive to errors in the positions and directions of the DOF's.
The rigid body motion can be derived as functions of the three amplitudes of the
DOFs in the following form (see Appendix A)

u=Ax, (1)
where u = {u;,uy,0}7 is the motion of the cross-section, x = {z;, i1, Tit2}”

y
. X DOF no. i+2

o y DOF no. i+1
N
S, X >

DOF no. i

R S pitch-axis

Figure 1. The degrees of freedom for a wind turbine blade.
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is the corresponding amplitudes in the three DOF's of the cross-section, and A is
a three by three matrix given by the positions and directions of the three DOFs.
Relation (1) is derived for any configuration of DOFs by assuming that the rotation
of the cross-section due to torsion is small (§ < 1).

When choosing a configuration of DOFs, it is necessary to ensure minimal sen-
sitivities of the motion u with respect to errors. Small sensitivities to errors in the
measured amplitudes x requires small elements of A. Small sensitivities to errors
in the configuration of DOFs requires small derivatives of elements in A with re-
spect to the positions and directions of the DOFs. More specific considerations
regarding the proper choice of DOF's are given in Appendix A.

Using relation (1) a mode shape of the blade can be estimated in a number of
cross-sections, presuming the corresponding modal amplitudes have been measured
in the three DOFs of each cross-section. How to obtain these modal amplitudes
from an experiment is the topic of the next section.

2.2 Extraction of modal properties

The extraction of modal properties used in the following experiment is based on a
formulation of the blade dynamics in the frequency domain. A frequency domain
formulation has some advantages which are useful in the modal analysis. This
section contains some mathematics which explains these advantages, and which
helps with the introduction of the experimental procedure and the modal analysis.

Modal properties from an eigenvalue problem

The natural frequencies and logarithmic decrements are the eigenvalues, and mode
shapes are the eigenvectors of an eigenvalue problem. To introduce this mathe-
matical concept the linear equation of free motion for the blade is considered. The
motion of the blade is described by L DOF's as shown in Figure 1. The deflection in
DOF i is denoted x;, and the vector x describes the discretized motion of the blade.
Assuming small deflections and moderate rotation of the blade cross-sections, the
linear equation of motion can be written as:

M%x+Cx+Sx=0, (2)

where (') = d/dt, and the matrices M, C and S are the mass, damping and
stiffness matrices. Inserting the solution x = v e’ into equation (2) yields

(M +AC+S) v=0, (3)

which is an eigenvalue problem. The solution to this problem is the eigenvalues
Ar and the corresponding eigenvectors vy for £k = 1,2,..., L. The eigenvalues of
a damped blade are complex A\ = o + iwy. The relationships between natural
frequencies f, logarithmic decrements ¢ and the eigenvalues are

fk = 2’/ka and 519 = *O'k/fk . (4)

Instead of logarithmic decrements §; as a measure of damping, the term damping
factors are sometimes used for the quantity or. The eigenvector v contain the
modal amplitudes vg; in all DOFs for mode number k. Using relation (1), the
flapwise— and edgewise deflections, and the torsion of the mode shape can be
computed for each cross-section from the modal amplitudes vy, i, Vi 41, and vy ;y2.

The modal amplitudes for a damped blade are complex. The imaginary parts
describe phase shifts between the motions at different points on the blade. For
a lightly damped blade these phase shifts are small and are generally neglected.
When the imaginary parts of the modal amplitudes are neglected the resulting

8 Riso-R-1181(EN)



mode shapes are termed normal mode shapes, otherwise they are termed the com-
plex mode shapes of a damped blade. Normal mode shapes are characterized by
having fixed nodes whereas the nodes of complex mode shapes are traveling.

The above eigenvalue problem shows that the problem of determining natural
frequencies, logarithmic decrements, and mode shapes of a blade could be solved
if one had a way to measure the mass, damping, and stiffness matrices. Such mea-
surements are however not possible. Instead one can measure transfer functions
in the frequency domain which hold enough information to extract the modal
properties.

Definition of transfer functions

A transfer function describes in the frequency domain what the response is in one
DOF due to a unity forcing in another DOF. It is defined as:

Hij(w) = Xi(w)/Fj(w), (5)

where w is the frequency of excitation, X;(w) is the Fourier transform of the re-
sponse z;(t) in DOF i, and Fj(w) is the Fourier transform of a force f;(¢) acting
in DOF number j. By measuring the response z; and the forcing f;, and perform-
ing the Fourier transformations, the transfer function H;; can be calculated from
definition (5). This transfer function is one of L x L transfer functions which can
be measured for the blade with L DOFs. The complete set of functions is referred
to as the transfer matriz H.

From transfer functions to modal properties

An estimation of all mode shapes can be obtained from only one row or one
column of the transfer matrix H. A row of transfer functions can be obtained
from an experiment by measuring the response in all DOFs, while the point of
excitation is fixed to one DOF'. To obtain a column of H, the response is measured
in one DOF while the point of excitation is moved between all DOFs. Either one
of these procedures can be used to obtain all mode shapes.

To understand this basis principle of modal analysis consider the linear equation
of motion (2) for the blade with external excitation

M +Cx+Sx = f(t), (6)

where the vector f is a forcing vector containing the external forces f;(¢) which
may be acting in the DOFs j = 1,2,..., L. To solve this equation, it is assumed
for now that the eigenvectors vi are known. The orthogonality of eigenvectors
yields that any solution to equation (6) can be written as the modal expansion

L
x(t) = ka ak(t), (7)
k=1

where ¢ are the time-dependent generalized coordinates. Inserting (7) into the
equation of motion (6), multiplying by v} from the left, and using the orthogo-
nality of eigenvectors?, equations (6) reduces to

(jk*QO—qu+(wlz+o—i)qk:V5fa k:1a27"'7L' (8)

This equation of motion shows that the generalized coordinates ¢ are uncoupled,
i.e., the modes of the blade are uncoupled.

2The eigenvectors satisfy the orthogonality conditions vEle = ngvl = vESvl =0
for A\ # A;. With the normalization of the eigenvectors ngvk = 1, it can be shown that
quvk = —20}, and VESV}C = wz + 0,%. Note that the orthogonality condition does not apply
in the case of multiple eigenvalues. In such case, special modal analysis techniques are needed
for decoupling of modes.
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The decoupling of modes yields that transfer functions can be written as a
sum of modal transfer functions. Using definition (5), and Fourier transforming
expansion (7) and equations (8), the transfer matrix can be derived as

N

Hw) =3 Hiw) = Y ViV (9)
k=1

et (iw — O — z‘wk) (iw — Ok + z‘wk) '

This relation is the basis of modal analysis. It relates the measurable transfer
functions to the modal properties wg, ok, and vi. Each mode k contributes with
a modal transfer matrix Hy to the complete transfer matrix. Hence, a measured
transfer function can be approximated by a sum of modal transfer functions:

N
Hij(w) ~ ZHk,ij(w)a (10)
k=1

where the modal transfer functions Hj, ;;(w) by decomposition can be written as

Tk.ij Th.ij

Hiyi5(w) = iw kj]pk + iw kj]ﬁk ’ ()
where the bar denotes the complex conjugate, pr = o + iwy is called the pole
of mode k, and 1y ;; = vg vk, is called the residue of mode £ at DOF i with
reference to DOF j. Thus, a pole is a complex quantity describing the natural
frequency and damping of the mode. A residue is a complex quantity describing
the product of two complex modal amplitudes. The modal properties are extracted
from measured transfer functions by curve fitting functions derived from (10) and
(11) with poles and residues as fitting parameters. There are different curve fitting
techniques, however, a few basic concepts are common for all these techniques.

Basic concepts of curve fitting

Figure 2 shows an example of a theoretical transfer function (10) with three modal
peaks corresponding to modes at 1, 2, and 4 Hz which are all damped with a loga-
rithmic decrement of 1 % (—oy/fi = 0.01). Also plotted are the individual modal
transfer functions (11) from which the complete transfer function is computed.

Comparing the complete and modal functions, an important feature of modal
decoupling for lightly damped structures is seen: In the vicinity of a modal peak the
complete (measured) transfer function is approximately given by the correspond-
ing modal transfer function. This feature enables curve fitting of modal transfer
functions to individual modal peaks in the measured transfer function (called
SDOF fits) if the peaks are “sufficiently” separated.

What frequency separation is sufficient depends on the level of damping because
a higher damped mode will have a wider modal peak. If two or more modal peaks
influences each other due to high damping or low frequency separation, a curve
fit over all these modal peaks can improve the result. This so-called MDOF fit
involves a sum of modal transfer functions which number equals the number of
close modal peaks.

The SDOF and MDOF curve fits yield estimations of the poles py and residues
Tk,; for all modes in the considered frequency band. If all transfer functions in
the transfer matrix were measured, the complete residue matrix can be estimated.
However, the residue matrix is symmetric because 7y ;; = v ;Uk,;. This is another
important feature of modal decoupling. Only a row (i fixed) or a column (j fixed) of
the residue matrix needs to be estimated in order to estimate the modal amplitudes
vk,; in all DOFs. A row is obtained by measuring the response in one DOF 7 while
individually forcing the structure in all DOFs. A row is obtained by measuring
the response in all DOF's while forcing the structure in one DOF j.

10 Riso-R-1181(EN)
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Figure 2. Example of the modal decoupling in a transfer function.

Another basic concept of curve fitting in modal analysis is the use of local and
global curve fits. Note that the denominator of the modal transfer functions (11)
are independent of the index ¢ and j. This means that the poles of a row or column
of transfer functions are identical for each mode. A global curve fit uses this feature
by first estimating the poles of each mode from all transfer functions. In the second
step the residues in each DOF of each mode are estimated from individual curve
fits to each transfer function using that the poles are given from the first step.
This procedure decreases the error on the poles and residues compared to a local
curve fit where the both poles and residues are estimated by individual SDOF or
MDOF fits to each transfer function.

These concepts of SDOF/MDOF and local/global curve fits are general methods
in modal analysis. The actual curve fitting routines will be discussed in Section 3.4
dealing with the modal analysis of measured transfer functions.

Accuracy of the estimated modal properties

The accuracy of the estimated natural frequencies, damping, and mode shapes
depends basically on three things: Accuracy of the measured transfer functions,
linearity of the blade dynamics, and accuracy of the DOF characteristics.

Measurement errors on the transfer functions directly influences the curve fits
which are used to estimate the modal properties. Measurement errors can have
many sources in experimental modal analysis. Some of them can be cause by
external mechanical noise, internal electrical noise, false calibration of transducers,
etc.. Also insufficient frequency resolution of the transfer functions decreases the
accuracy of the curve fits.

The non-linearities in the blade dynamics will distort the transfer functions
yielding that the theoretical basis for the curve fits may become invalid. Such
non-linearities could arise from large deflections of the blade, or for example from
a loose tip brake that slides in its support during the measurements.

Even though the modal amplitudes are estimated with high accuracy, the esti-
mated mode shapes may be inaccurate due to poor measurement of the directions
and positions of the DOFs.

All these sources of error are considered in the experiment procedure presented
in the next chapter. Methods to estimate the accuracy of the natural frequencies,
damping, and mode shapes are also discussed.

Risg—R-1181(EN) 11



3 Experimental method

The present chapter deals with considerations related to the practical implemen-
tation of the modal analysis procedure (as described in the previous chapter)
in dynamic testing of wind turbine blades. First different possible experimental
strategies are discussed, then the experiences gained from the performed experi-
mental program are outlined which subsequently leads to formulation of a recom-
mended practice, and finally the extraction of the modal characteristics from the
measured quantities are described.

3.1 Modal analysis techniques

Modal analysis provides information on the dynamic characteristics of structural
elements at resonances, and thus aids in understanding of the detailed dynamic
behaviour of these. A basic feature with the technique is the presumption of lin-
earity of the mechanical system, as described in Chapter 2. A quantitative test on
linearity can be performed, based on a measured complex frequency response func-
tion (resulting from a sinusoidal excitation), by applying the Hilbert Transform
as described in [5]. Other indications of possible non-linearities may be obtained
from evaluation of suitable coherence functions as is described in more details in
the following.

Having decided to base the experimental testing of wind turbine blade dynamics
on modal analysis, two basic questions arises: 1) how to excite the wind turbine
blade, and 2) how to ensure acceleration responses that can resolve the required
types of deflection patterns in selected cross-sections.

Excitation techniques

The different ezcitation techniques fall in two basic classes — transient excitation
(free vibration) and continuous excitation (forced vibration).

Continuous excitation is typically performed with electromagnetic or hydraulic
based exciters able to produce f. ex. swept-sine excitation, white noise excitation,
pseudo-random excitation or periodic-random excitation. Usually, the excitation
is subjected in only one point, however, for large or highly damped structures it
might be advantageous to apply more exciters simultaneously.

The transient type of excitation is usually associated with either an impulse
force loading or an instantaneous release from an initial deflection of the structure
(known as the snap back principle).

Required recordings

Independent of the selected excitation method, it is in practice usually necessary
to treat the selected blade cross-sections successively, in order to obtain a suit-
able spatial resolution of the eigenvectors describing the mode shapes for a large
structure as a wind turbine blade. However, in principle, if unlimited resources
were available for equipment, all the required response signals could be measured
simultaneously.

In its simplest form, a modal analysis requires recordings only of the structural
response. In this situation a reference response signal is required to relate suc-
cessively recorded cross-sectional responses mutually and thereby determine the
resonance deformation pattern. However, applying this experimental procedure
excludes the results from being subsequently used in a system analysis providing
(absolute) information on the structure stiffness and mass properties. The crucial

12 Riso-R-1181(EN)



point is here, that only information on the relative proportion between stiffness—
and mass properties is obtained.

If, in addition to the structural response, also the force excitation (magnitude
and direction) is recorded, then the system parameters (stiffness— and mass prop-
erties) can be identified in addition to information on natural frequencies and
deflection/damping properties at resonances.

Analysis methods

The analysis method, used to extract the required results from the measured data,
can be performed either in the time domain or in the frequency domain. The
time domain method is based on a least square optimization of modal ampli-
tudes, modal damping and modal phases, given a selected (but arbitrary) number
of resonances. The frequency domain analysis is based on the concept of trans-
fer functions as described in Chapter 2 (when the excitation force is recorded —
otherwise it is based on the spectral energy contained in the resonance peaks).

Investigated experimental procedures

In the present experimental campaign, the main effort has been put on a tradi-
tional approach applying transient force excitation in combination with frequency
domain analysis based on transfer functions. The motivation for this choice is
elaborated on in Appendix E. The experiences gained from the impact excitation
approach, during the experimental campaign, are reported in Section 3.2 which
directly leads to a detailed description of a recommended experimental practice
in Section 3.3 and an associated analysis method in Section 3.4. Alternative ex-
perimental strategies and analysis methods, investigated during the course of the
project, are briefly described in Appendix E.

3.2 Experimental cognitions

All the experimental tests have been performed on a LM 19.1 m wind turbine
blade mounted in a horizontal position by clamping the root blade flange to a
rigid test stand. The blade is not a standard product, but a LM19 version with
increased edgewise structural damping characteristics (cf. the logarithmic decre-
ments presented in Section 4.2). In order to avoid large initial deformations, that
could potentially complicate the practical determination of a suitable geometric
reference axis, and in addition to obtain a realistic static load picture for a blade
mounted on a real wind turbine, the investigated blade structure has been mounted
with the tip chord in a vertical position. Further, to prepare for a possible appli-
cation of "skew” exciting forces (forces with an angle of the magnitude of 45 deg
with the chord that is able to excite flapwise as well as edgewise dominated blade
modes simultaneously) the blade is, for practical reasons, mounted with the robust
leading edge (free of edges contrary to the tailing edge) pointing downwards.

Excitation

The transient force excitation is established by means of a hammer device of

sufficient mass and velocity that impacts the turbine blade once, giving it an

initial velocity and acceleration 3. The structure is at rest before the excitation.

After the hammer impact, the (external) force is zero again, and in this situation

3Note, that the force excitation should be applied only at locations that is not nodes of
relevant mode shapes.
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equation (6) reduces to an initial value problem with only homogeneous solutions.
The turbine blade thus oscillates with a superposition of its discrete eigensolutions.

Ideally, considering the excitation force mathematically to be described by a
Dirac function, 6(+), the hammer excitation enables all frequencies to be excited
simultaneously with an equal amount of energy (a flat input spectrum). With the
notation introduced in Chapter 2, this can be seen from

f(t) = foo(t—to), (12)

whereby the Fourier transform of the external forcing is formulated as

Flw)=1. (13)

In practice, however, the concept of a Dirac function is only a (useful) theoretical
abstraction, and the hammer hit will have a final duration in time, with the
consequence that an upper cut-off frequency is introduced in the Fourier spectrum
of the excitation force. This fact is utilized actively in the present experimental
procedure, by applying the hammer head as a mechanical filter, and thus making
the appropriate choice of the hammer head an important parameter for this type
of transient excitation.

For wind turbine blades only a limited frequency band is of relevance — typically
the frequency range between 0.5 Hz and 30 Hz. In this situation the hammer head
can be tuned/tailored to concentrate the total excitation energy, supplied by the
hammer hit, in this frequency band. Introduction of a cut-off frequency in the
excitation spectrum in this way has appropriate implications for the required
signal- and sampling® resolution.

The implications for the signal resolution are closely related to the signal /noise
ratio associated with the relevant frequency range. If undesirable high frequency
modes were excited, high signal levels of accelerations in a frequency band, that
are without practical relevance, would be present in the response signal. As the
magnitude of the acceleration response equals the deflection amplitude weighted
with the associated natural frequency squared (harmonic oscillation), the sensi-
tivity of the amplifiers would have to be adjusted to these short-term peeks, thus
giving rise to unacceptable amplitude resolution of the important low-frequency
part of the response. This would in turn reduce the signal/noise ratio in the rele-
vant frequency range. By introducing the mechanical filter these short-term peaks
are avoided, and, in addition, the magnitudes of the excitation— as well as of the
response signal, in the important frequency range, are enhanced. Assuming the
share of the noise, originating from the electronic measuring equipment, to be the
dominant noise contribution, and further assuming this contribution to be inde-
pendent of the signal level, the signal/noise ratio will be improved, in the relevant
frequency range, as a consequence of application of the mechanical filter.

The implications for the sampling resolution are related to a possible distortion
of FFT generated spectra caused by aliasing [11]. As we aim at performing the
signal analysis in the frequency domain, it is of vital importance to ensure a
correct representation of the FFT transformed excitation— and response signals.
By introducing an appropriate mechanical filter, aliasing is avoided by selecting a
sampling rate with a Nyquist frequency, that exceeds the introduced filter cut-off
frequency.

The cut-off frequency, introduced by the mechanical filter, is closely related to
the duration of the contact between blade and hammer head in a stroke. The
contact duration in turn depends on impact velocity, rebound velocity, elastic
(and plastic) properties of the structure/hammer, tip radius and hammer mass.

4Time resolution of the excitation signal as well as of the response signal.
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Figure 3 illustrates the fundamental effect on the excitation force characteristics
caused by applying two different stiffnesses of the hammer head. The results are
based on a simple mathematical model, in which the LM 19 m blade is represented
by a beam model with 9 degrees of freedom. No damping of the structure is taken
into account in the modelling.

Even though the general hammer motion is approximately the same for both ex-
periments (and thus the momentum exchanged) there are significant differences.
The impact duration is significantly longer using the soft hammer head, corre-
sponding to the fall off in the spectrum of the excitation force and the reduced
content of high frequency component in the response.

Depending on the dynamic characteristics of the blade, the hammer head that
suits the actual experiment best must be selected. This is basically a trial and
error process that may be facilitated/supported by experience and by numerical
investigations. Note, that the choice of a suitable hammer head will usually (in
addition to the general dynamic characteristics of the blade) also depend on the
particular cross-section to be investigated.

Response

The response signals consist of accelerations measured in an arbitrary number
of cross-sections along the pitch axis. Each cross section is instrumented with
two (spatially displaced) uniaxial accelerometers recording the accelerations in
the flapwise direction, and one uniaxial accelerometer recording the acceleration
in the edgewise direction, respectively. As described in Section 2.1, each cross
section is assumed to deflect as a rigid body (in a plane perpendicular to the

soft tip hard tip
0.2 ' 0.2 '
f hammer deflection f hammer deflection
4 [ 8 10
h/m| z @ 3 8 0 h/m
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-0.2 t/s—= -0.3 t/s—=
-0.3 -0.4
0.5
4000
800
0
E/N contact force FIN, contact force
400 o
200 1000
H t/s—= t/s—=
2 4 6 8 10 ' 2 4 6 8 10
blade deflection in point of contact blade deflection in point of contact
0. 002
| L
b/m 0
-0.001
-0.002
300 FFT of contact force F 300 FFT of contact force F
250 250
FN FN

100 100

Figure 3. Numerical model of hammer excitation of the blade applying two different
stiffnesses of the hammer head.
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pitch axis). With this assumption, supplemented by an assumption of small de-
flections, a unique relationship exists between the accelerometer recordings and
the modal displacements of the cross-section expressed in terms of flapwise de-
flection, edgewise deflection and torsion around the pitch axis, respectively. This
relationship can be utilized in sensitivity considerations aiming at determining
the most suitable definition of the DOF’s within a cross-section. Using resolution
of the torsional deflection (which appears to the most critical of the investigated
deflection types) as the decisive factor, two simple guidelines can be derived (cf.
Appendix B):

e The distance between the two accelerometers recording the flapwise acceler-
ations should be as large as (practical) possible; and

e The angle between their measuring axis should be as close as possible to zero
degrees.

Reference axis

In order to link measured modal deflections in one cross-section to modal deflec-
tions in other cross-sections, a reference azis for the blade must be defined. The
reference axis ensures that the deflections computed for each cross-section, ac-
cording to the algorithm described in Appendix A, all refer to the same Cartesian
co-ordinate system. In the present experimental campaigns, the reference axis has
conveniently been chosen as the symmetry axis from the cylindrical blade root
cross-sections extended to the blade tip. The practical aspects related to estab-
lishment of the reference axis are further described in Section 3.3.

Error sources

When resting on impact testing and extracting the modal characteristics in the
frequency domain, measurement of the transfer function, as defined in Section 2.2,
become of vital importance (cf. Section 3.4). Consequently, besides the accuracy
of geometric quantities, such as measuring/excitation location and direction, the
accuracy of the measured transfer function, reflecting the accuracy of the sensors
and the recording system, is important. These two classes of error sources are
addressed in the following.

Uncertainties in DOF characteristics

To reduce the uncertainties, originating from erroneous definition of the geom-
etry (i.e. bad specification of forcing/recording location or direction), different
approaches have been considered.

Two approaches has been examined for the alignment of the response recording:
1) mounting of the accelerometers directly on the surface of the wind turbine blade,
and 2) mounting of the accelerometers on a special designed support structure
attached to the blade.

Basically, the applied support structure consists of a saddle connected to a beam
on which the accelerometers are mounted. The saddle is connected to the beam by
a hinge that allows for rotation around an axis perpendicular to the beam axis. The
saddle is equipped with three adjustable legs, and it is easily fixed to a particular
blade cross-section by tightening a belt. The mounting beam is equipped with
levelers that facilitate the adjustment of the recording directions by adjusting the
hinge rotation and the length of the saddle legs. The applied support structure is
shown in Figure 4 below.
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Figure 4. Support structure for response measurements.

Concerning determination of the DOF locations, relative to some global blade
coordinate system, the two recording methods are considered to result in uncer-
tainties of the same order. However, the determination of the DOF locations is
somewhat simpler with the accelerometers attached directly to the blade surface,
where it suffices to measure simple relative coordinates (e.g. relative to blade root,
leading edge, trailing edge etc.), and then subsequent transform these to the abso-
lute coordinates, based a detailed drawing of the actual blade. The complicating
factor, when using the support structure, is that the position of the support struc-
ture, relative to a cross-section, can not be easily measured. This problem can,
however, be solved by aligning a reference laser beam along the blade at a conve-
nient distance from the blade surface (cf. Section 3.3). Aligning the accelerometers
in the vertical direction, the point of intersection, between the laser beam and a
screen mounted on the support structure, provides the necessary information for
assessing the DOF positions in the global coordinate system.

Concerning determination of the DOF directions, the recording method, based
on the support structure, is superior, as it turned out to be difficult to control
the measuring directions of the accelerometers, when these were mounted directly
on the blade surface. An error introduced in the measurement direction in turn
introduces a considerable error in primary the blade torsion deflection component
(c.f Appendix B). For this reason, it was decided to base the final blade testing
on the recording approach based the measurement bridge, where much better
resolution of the torsion response was obtained.

The sensitivity of the (torsional) mode shapes, on errors in location and di-
rections of DOF’s, can be reduced by appropriate definitions of the DOF’s. In
Appendix B it has been shown that an optimal DOF configuration (assuming
three DOF’s in each blade measurement section) requires the distance between
the two flapwise DOF’s to be as large as possible, and the directions of these to
be identical.

Analogous to misalignment of the recording equipment, errors are introduced
in the blade mode deflections, if the specified direction of the applied forcing is
contaminated with uncertainties. In order to avoid (minimize) such errors, three
different techniques for generation of impact loading were examined: a pendulum,
a hand-actuated hammer, and a special guided hammer (the ”seesaw” — depicted
in Figure 6).

The pendulum used here was a piece of heavy spar, mounted and supported
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through a chain attached to each end. This pendulum is characterized by rather
good control of force level and direction, but it takes a very stable support struc-
ture to carry it (e.g. an industrial truck), and the use is restricted to horizontal
excitation. For these reasons this type of hammer exciter was excluded in the
further analyses.

The classical hand-actuated hammer was used only for exciting a small test
blade. Due to the difficulties controlling the direction as well as the force level,
this method was found unattractive.

The ”seesaw” was in this case a welded, sledge-like piece of steel, carried and
suspended by a standard workshop lift. This hammer is characterized by a good
control of the force direction, however, with some difficulties in controlling the force
level since this hammer is operated manually. It could be conveniently moved to
different positions along the blade, to be operated for excitation in horizontal—
as well as in vertical direction. In conclusion, this hammer was considered as the
most appropriate for transient excitation of the wind turbine blade.

In addition to errors in the specified direction of the forcing and recording,
possible errors in the specified location of these quantities also affect the result of
a modal analysis. It is therefore essential that the measuring— and forcing locations
are carefully determined.

Uncertainties related to the measured transfer function

The basic requirements for establishing the transfer function are that the input—
and response signals are Fourier transformable, and that the input signal is non-
zero at all frequencies of interest. These requirements are easily fulfilled. The
next consideration is how to compute the transfer function. The straight forward
method is of course to compute the transfer function directly as the ratio between
the Fourier transforms of the response and input, as expressed in the definition
given in equation (5).

However, due to the inevitable presence of extraneous noise in the measured
signals, this procedure will result in estimates of the transfer function encumbered
with significant statistical uncertainty being partly based on only single (raw)
estimates of the Fourier transforms of the noise contributions. A more suitable
approach, involving a signal averaging procedure, is to determine the transfer
function as the ratio between the cross-spectrum (between the observed input—
and the observed response signal) and the power spectrum of the observed force
signal. It can be shown that this choice of transfer function estimate, for signals
containing external noise contributions, is an optimum choice in the sense that
the estimate, in an average sense, is the best possible (cf. Appendix C).

We now interpretate the observed force signal, as well as the observed response
signal, as superpositions of a physical signal and an inevitable noise contribution.
Assuming that the noise, superimposed on the physical response signal, is uncor-
related with the physical input signal, and that the noise, superimposed on the
physical input signal, is uncorrelated with the physical input signal as well as
with the ideal response signal, the optimum transfer function estimate, H’ij (w), is
determined from (cf. Appendix C):

tyt
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where H,;(w) is the transfer function associated with the physical force— and
. FiXi . .
response signals, 57 (w) is the cross-spectrum between the observed forcing and

the observed response, SgtF ' (w) is the power spectrum of the observed forcing,
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Sf;F (w) is the power spectrum of the physical forcing, and ngNf (w) is the power
spectrum of the noise superimposed on the force signal. The lower indices, ¢ and
j, indicate that the quantities are related to an experiment where the forcing is
acting in DOF number j, and the response is measured in DOF number 1.

Compared to a ”traditional” estimate of the transfer function, computed accord-
ing to the definition given in equation (5), the present optimum transfer function
estimate excludes the influence from the inevitable noise in the response signal.
The price we payed, to avoid the influence from the response noise, is that the
optimum transfer function estimate is a biased estimate of the ideal transfer func-
tion. Equation (14) shows that the bias depends on the input signal/noise ratio
only, and it tends consistently to zero when the input noise contribution approach
Zero.

In addition to the bias on the estimated transfer function, caused by natural
variability of the input signal noise, the estimated transfer function is also affected
by statistical uncertainty in the estimates of the (expected) cross— and autospectra.
The statistical uncertainty on the spectral estimates is inversely proportional to
the number of averages used in the estimate (cf. Appendix D), and usually quite
few averages suffice (say, of the order of 5).

Finally, possible non-linearities in the investigated physical system will intro-
duce variability in the estimated transfer function. The application of a transfer
function in modal analysis presumes a linear constant parameter physical sys-
tem, and in case this presumption is violated, the effect on the estimated transfer
function will be similar to the effect caused by conventional signal noise. Possible
non-linearities related to a wind turbine blade could be sliding between tip brake
and the remaining part of the blade, non-linear damping characteristics or load-
sensitive stiffness (unlikely for the load levels applied in the present experiments).
Possible non-linearities (or errors), associated with the recording technique, could
occur if the used measuring bridge is not completely fixed to the blade structure.

Error measures

A handy measure of the quality of the estimated transfer function (and thus
the associated measurements) is the coherence function (cf. Appendix C). Having
estimated the transfer function in terms of spectral quantities, as described above
in equation (14), the coherence function is easily derived. The coherence function
between the observed input— and the observed response signals, fythtQ(w), is
defined as :

t t
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(15)

where Si)]{ Xt (w) is the power spectrum of the observed response signal.

For perfect correlation (under a linearity assumption) between observed input—
and response signals, the coherence function can be shown to equal one® (cf.
Appendix C). The coherence function thus indicates the amount of noise and
non-linear effects present in the investigated system. In addition, it indicates the
amount of statistical uncertainty in the spectral estimates, on which the estimate
of the transfer function is based. The coherence function is consequently perfectly
suited as an ”on-line” decision tool® for assessing the number of averages required
for obtaining satisfactory spectral estimates.

5Except at resonance and antiresonance frequencies.
6The idea is to follow the convergence of the coherence function as function of the number of
applied averages.
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Measuring the degree of correlation between the observed input— and response
signals, the coherence function is intimately related to the quality of the estimated
transfer function. It is therefore to be expected that the statistical error on the
transfer function estimate depends on the coherence function. This error, as ex-
pressed in terms of the standard deviation on the estimated transfer function,
O, (w), can be quantified explicitly as [9]

1y ) = (105w
L YTV

)

(16)

where N denotes the number of samples to be averaged in the estimate of the
transfer function. In accordance with the above considerations, o i, (w) is seen to
depend strongly on the coherence function. Also consistent with our expectations
is that the standard deviation on the estimated transfer function is seen to tend to
zero for N approaching infinity, or for the coherence function approaching one (cor-
responding to a perfectly linear system without extraneous noise contributions).
Note, that scatter on the transfer function in general might depend somewhat on
the frequency.

Noise sources

As stated above, signal conditioning is an important parameter for achieving a
satisfactory estimate of the system transfer function. One of the crucial recog-
nitions, with the present type of blade tests, is that the response signal often
combines low signal levels with low frequencies. This puts severe requirements
on the response sensors. The experimental campaign has shown that the initially
used B&K Delta Tron accelerometers (cf. Appendix F) performed unsatisfactory,
and these were consequently replaced by conventional accelerometer types with
an associated charge amplifier (cf. the setup described in Section 3.3).

However, the signal/noise ratio does not only relate to the electronic features
of the recording equipment. Part of the noise in impact testing is due to multiple
rebounds which vary randomly between tests. Reduction of such error sources
depends on the skills of the experimenter, and the possibility for on-line filtering by
continuously monitoring of the quality of the excitation. Analyses [2] have shown,
that provided the force excitation do not vary between tests, the signal/noise ratio
obtained from impact testing is comparable with the one obtained using harmonic
excitation.

Roving recording or roving forcing

Due to the symmetry of the FRF matrix, expressing the dynamic relationship
between excitation (direction, magnitude) at a given location and the structural
response in one of the defined DOF’s, the experiment can be performed either
with fixed excitation location and roving response recording, corresponding to the
chosen discretization of the blade motion (cf. Chapter 2), or vice versa. Note, that
in case of roving excitation, the mechanical filter, to be used, usually will depend
on the position of the point of excitation. From a theoretical point of view no
recommendations can be derived. However, practical aspects related to conduction
of the experiments may decide which strategy is the most convenient. In case of
hammer impact with the recording equipment mounted on measuring bridges, the
experimental work involved in the execution of the two strategies is very similar. A
small investigation of the coherence functions related to excitations/recordings in
three cross-sections (positioned in the blade root, the middle of the blade, and at
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the blade tip, respectively) was slightly in favour of the roving recording concept,
as the best coherences were obtained in the outher part of the blade using this
concept.

Misinterpretation of results

It should be noted, that even in case all the above sketched technical requirements
for minimization of possible error sources are meet, one might end up with a
misleading interpretation of the achieved results, if the analysed physical system
diverts from the "ideal” physical system.

In the case of blade testing, such misinterpretations could occur if f. ex. the test
stand does not have sufficiently stiffness, or if the measuring bridge is not properly
designed, such that undesirable flexibilities from the bridge is introduced into the
(compound) structural system? (or, alternatively, if the used measuring bridge is
not completely fixed to the blade structure).

In the following section the experience gained through the measuring campaign,
and briefly described above, is summarized in a recommended experimental prac-
tice for wind turbine blade testing.

3.3 Recommended experimental procedure

Based on the experiences gained during the experimental campaign, as described
in Section 3.2, a recommended practice for wind turbine blade testing has emerged.
Although the experience relates to the tested LM 19 m blade, the learnings
achieved are believed to be of a more general nature and as such also applicable to
other wind turbine blades®. The recommended experimental setup is summarized
in Figure 5 below.

/ Support

m—
Accelerometers
(BK 4370)
Force
transducer PC
(BK 8201)
LB
T T
(Pentium)
Hammer
4 channel Aquisition
Amplifier Frontend
(NEXUS 2692) (BK 2816)

Figure 5. Schematic illustration of the experimental setup.

7Of course the introduction of a measuring bridge will inevitably modify the compound
structural system. However, by designing the bridge sufficiently stiff and light, this effect can
usually be neglected in the frequency range of interest.

8 At least applicable for other blades with comparable characteristics.
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Mounting of the blade in a test stand

The blade is mounted in a horizontal position with the root flange clamped to a
rigid test stand. To ensure that the correct physical system is investigated (i.e.
the boundary conditions of the physical blade is as theoretically specified), it is
important either to ensure that the test stand is perfectly rigid or, alternatively,
to measure the flexibility of the stand. As motivated in Section 3.2, the blade
is mounted with the tip chord in a vertical position and with the leading edge
pointing downwards.

Transient loading

The transient loading is established by means of a special designed guided hammer,
shown in Figure 6, that ensures sufficient accuracy in the location and direction of
the applied forcing.

Accelerometers

Figure 6. Experimental setup with the excitation hammer in the foreground.

Note, that the location of the forcing must not coincide with nodes of modes
of interest, and that the direction of the applied forcing should be adjusted to
the mode shapes of relevance for the investigation?. Usually, two (independent)
experimental campaigns are required to resolve all mode shapes of interest. One
campaign is devoted to resolve the flapwise— and the torsional mode shapes, and
another campaign is performed to obtain the edgewise modal properties.

When applying the forcing, care should be taken to achieve impulse loadings of
(approximately) the same magnitude, for repeated strokes related to a particular
cross-section, in order to improve the signal/noise ratio [2]. For the same reason,

9In principle, due to structural coupling between torsional, flapwise and edgewise deflection,
the excitation can be applied in an arbitrary direction. However, these couplings are usually
relative week with the consequence that the signal/noise ratio for recordings of the deflection
in the direction perpendicular to the forcing direction become poor. Thus, in practice, the most
reliable results are obtained by applying the excitation in the flapwise as well as the edgewise
direction, and subsequently only derive a particular modal shape from the excitation applied in
the dominating modal deflection direction.
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care should also be taken to obtain loadings of a suitable magnitude. In order not
to lose the time advantage of the impulse technique, compared to other excitation
methods, only a few repeated strokes are usually performed (in the present ex-
perimental campaign between 3 and 5). Therefore, in addition to averaging, time
sample windows are used to further improve the signal/noise ratio.

However, the selection of a suitable time window is not straight forward. To
minimize the distortion of the frequency domain representation of the forcing,
caused by applying a time sample window, requires minimization of the width of
the main lope of the window transform. However, reducing the width of the main
lope of the window transform implies decrease in the effect of the noise reduction
obtained, as both the width of the main lope and the amount of noise reduction
are inversely proportional to the width of the window in the time domain [2]. A
well performing compromise is usually achieved by applying a time sample window
with unity amplitude for the duration of the pulse combined with a cosine taper
with a duration of 1/16 of the total sampling period decreasing from unity to zero.

Multiple rebounds should be avoided as the resulting load frequency spectrum
will have zeros due to the periodic nature of such input signals. As a consequence,
very low levels of force will be imposed at certain frequencies, giving rise to a
poor signal/noise ratio at these frequencies. In practice, the applied hammer was
equipped with a counteracting spring that facilitated a single-loop force history, by
providing a favourable ratio between the hammer velocity and the hammer force
counter acting the hammer movement just before impact. It is advised to quantify
the quality of the imposed loading by on-line recording of the coherence function.
In case of badly conditioned signals, the associated result should be rejected.

Imposing the loading as described above is a delicate matter, and it may well
require some practice to achieve the necessary skills.

The hammer loading is recorded by means of a B&K force transducer type 8201
(cf. Appendix F) mounted on the hammer head, and with a mechanical "rubber
filter” mounted on top (cf. Section 3.2). The characteristics of the mechanical
filter (the hammer head hardness) must be adjusted based on a trial and error
procedure, until the wanted input frequency characteristics (i.e. duration of the
applied force excitation pulse) is achieved. In order to assure a suitable level of
the forcing, over the frequency range of interest, the first zero crossing of Fourier
transform of the loading must be well above the maximum natural frequency of
interest. The optimum hammer head hardness will usually depend on the blade
position, at which the impulse forcing is applied, due to the varying elastic stiffness
of the blade structure with the position. The signal from the force transducer is,
through a B&K 2635 charge amplifier, led to the B&K PULSE system.

Data aquisition system

In the present configuration, the PULSE system basically consists of the B&K
Multichannel Aquisition front-end unit (Type 2816) integrated with the PULSE
software (B&K Noise and Vibration Analysis Type 7700) running on a pentium
Personal Computer equipped with two dedicated DSP bords (Type ZD 0812)
that perform the realtime FFT and control the communication between the front-
end and the PC. The setup is illustrated in Figure 5. The front-end unit was
equipped with a B&K Signal Analyzer Interface Module (Type 7521), three 4-
channel B&K Input Modules (Type 3022) and a B&K generator module (Type
3107). The Signal Analyzer Interface Module provides the sampling clock and
transmits data to the TAXI interface. The Input Modules support measurements
on four channels up to 25 kHz. The Generator Module is a single channel generator
with a frequency range of 0 to 102.4 kHz (this module is only used to control of
the random excitation using an electromagnetic exciter — cf. Appendix E). Further
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details on the hardware can be found in Appendix F.

Spatial discretization

Depending on the mode shapes of relevance, a suitable spatial discretization along
the blade axis is selected by focusing the response recordings on a limited number
of blade cross-sections (cf. Section 2.1). In general, the selection of convenient
measuring cross sections must take into account not to locate these at nodes of any
of the relevant mode shapes. In the present experimental campaign a maximum of
20 cross sections were selected. For practical reasons, the cross section, at which
the forcing is applied, has been selected mot to coincide with any of the cross
sections where response recordings are performed. The forcing is used as reference
to link together the responses from the various cross-sections, and therefore a
response recording at the cross-section where the force is applied is not required.
Put in an other way, this means that the diagonal elements of the system transfer
matrix, H, defined in Section 2.2 is not needed.

Recording of the response

For each cross-section three DOF’s are recorded — two aligned in the flapwise
direction and one directed along the edgewise direction. The associated three
accelerometers are mounted on a support structure as illustrated in Figure 4. The
use of a support structure has the following advantages compared to mounting
the accelerometers directly on the blade surface:

e Improved accuracy in the DOF direction specification; and
e The establishment of new measuring cross-sections are somewhat facilitated.
The disadvantages are:

e That the transformation of the measured DOF locations, to the required
global coordinate system, is more complicated and requires establishment of
a laser beam reference axis in space; and

e That the weight of the support structure might affect the structural be-
haviour.

The accelerometers mounted on the support structure were uni-axial B&K ac-
celerometers type 4370. These were connected to the B&K PULSE system [3]
through a B&K NEXUS Charge Conditioning Amplifier (Type 2692). Detailed
information on the specifications of the equipment can be found in Appendix F.
Besides amplifying the response, the B&K NEXUS Charge Conditioning Amplifier
is tailored with dedicated high— and low-pass filters used to eliminate undesirable
high frequencies and thereby also aliasing.

Determination of DOF in a global coordinate system

A laser beam is established along the blade, at a convenient distance from the blade
surface. If the orientation of the laser beam, relative to e.g. the blade root cen-
terline and the (un-deflected) blade tip, is accurately measured, then the required
reference axis in space is established, allowing the use of support structures in the
recording. Provided that the support structure, and thus the accelerometers, are
aligned in the vertical direction, the coordinates of the accelerometers, relative to
the reference axis, are easily measured by attaching a light-weight screen to the
support structure, and read the laser beam intersection point at this screen. The
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transformation of the DOF position as well as the DOF direction to a selected
global coordinated system is thus straight forward.

Now, the self-weight of the blade will introduce a (modest) initial deflection
of the blade when clamped to the test stand as described previously. As a con-
sequence, the observed DOF coordinates (in the global coordinate system) will
wrongly include this initial blade deflection. The relation, connecting the response
observations in given cross section with the rigid body displacements of the same
cross sections (cf. equation (A.4)), assumes that the observed DOF coordinates
refer to an un-deflected blade configuration. As a consequence, an error in the
mode shape determination is introduced, unless we correct the observed DOF co-
ordinates for the initial blade deflection. In the present campaign, the correction
was performed based on measured values of the initial blade deflection, assuming
the un-deformed pitch axis to pass through the centre of the root section and the
mid point of the tip chord. The initial deflection is negligible in the root part of
the blade, and it is usually only of importance for response recordings close to the

tip.

Noise reduction

The resulting response signal is, as were the case for the force signal, also superim-
posed with a noise contribution. To minimize the effect of this noise contribution,
it is advantageous to let the total sample time approximately correspond to the
length of the response signal. In case the duration of the sample signal is much
shorter than the total sample time, the noise may constitute a significant part
of the total energy contained in the signal, thus resulting in a poor signal/noise
ratio. In case the duration of the response signal is considerable longer than the
total sample time, a rectangular time window is implicitly applied, implying the
usual distortion of the transformed response signal. To reduce the effect of inexpe-
diently sample lengths, an exponential window is usually multiplied on the time
response signal. Note, however, that the use of exponential windowing has the
effect, that it increases the apparent damping on the natural frequencies, which
must subsequently be corrected for'C.

Calibration and adjustment of input ranges

Immediately before starting the measuring campaign, the accelerometers are cal-
ibrated using the B&K dedicated calibration equipment (Type 4294). The B&K
calibrator offers a calibration of the sensors using a fixed frequency (159.2 Hz)
and a reference level of 10 m/s?. However, when performing experimental modal
analysis of very large blades (i.e. 40 m and above), the first flap frequency is likely
drop even below 1 Hz. If the aim is to cover the range of the first flap frequency
up to the first torsional frequency, this will mean something like 0.5 Hz to 15 Hz.
Most accelerometers on the market are primarily designed for considerably higher
frequencies, and in this situation one should therefore throughly investigate the
performance of the choosen sensors in the 1 Hz region. One way to do this is
through direct comparison (f.ex. parallel mounting on an electromechanical ex-
citer, producing a sine motion) with a DC accelerometer having well documented
performance at low frequencies. An even better approach is to use a high preci-
sion crankshaft calibrator to perform absolute calibration over the full range of
interest.

A calibration of the force transducer is not required, partly because the drift
of this instrument is considered negligible, partly because the force signal is used

10The added damping is very precisely known, and the correction is therefore very reliable.
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only as a reference, such that the absolute value of this signal is not essential for
the subsequent data analysis.

Finally, besides calibration, the introductory measuring phase also include ad-
justment of the input ranges of involved signal conditioning— and analysis equip-
ment, to achieve the optimum signal/noise ratio without overloading [12].

3.4 Modal analysis

To estimate the mode shapes, natural frequencies, and damping from the measured
transfer functions, a modal analysis software called ME’scopeModal [14] is utilized.
This software is basically a specialized tool for curve fitting the theoretical transfer
functions derived in Chapter 2 to the measured transfer functions. The modal
analysis of the measurements is divided into four steps:

1. Export of transfer functions from Pulse to ME’scopeModal
2. Extraction of modal parameters by curve fitting

3. Calculation of mode shapes from estimated residues

4. Estimation of accuracy of modal parameters

Each of these steps are described in more details below.

Export of transfer functions from Pulse to ME’scopeModal

All transfer functions measured at the three DOF's in each cross-section are trans-
ferred from the Pulse system to ME’scopeModal using the Universal File Format
[14]. Tt is important to have a file ordering scheme that identifies each transfer
function to its DOF. The functions can thereby be numbered accordingly when
they are imported into ME’scopeModal.

Figure 7 shows a screenshot of ME’scopeModal after fifteen measured transfer
functions are imported. A list of all functions are shown in the right of the picture
while the magnitude of three functions are plotted to the left. These three transfer
functions are measured in the first selected cross-section of the blade. They are
therefore the first three functions in the list. The next three transfer functions in
the list are measured in cross-section number two and so on.

The blade in the example of Figure 7 has seven modes in the frequency range
from 0-25 Hz. This can be seen by the seven modal resonance peaks. The magni-
tude and form of these peaks are described by the corresponding modal parameters
which are now to be estimated from global curve fits.
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Figure 7. Measured transfer functions imported into ME’scopeModal.
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Extraction of modal parameters by curve fitting

For curve fitting to the measured transfer functions ME’scopeMODAL uses a
Rational Fraction Polynomial (RFP) curve fitter (see e.g. [15], or [16] for a review
of several curve fitting techniques). The RFP curve fitter is a global curve fitter
capable of doing SDOF and MDOF fits (cf. Section 2.2). The name of this fitter
refers to the fit function which is a rational fraction of polynomials.

The RFP fit function arises from the theoretical transfer function (10) by col-
lecting the fractional modal transfer function in the sum (10) to a single rational
fraction of polynomials. It can be shown that the denominator of the RFP fit
function is the characteristic polynomial which roots are the poles of the modes
involved in the fit. The poles can therefore be obtained from the estimated co-
efficients of the denominator, similarly, the residues can be obtained from the
estimated coefficients of the numerator.

The RFP fitter minimizes the absolute difference between the RFP fit function
and the measured transfer function. This minimization problem can be shown to
be linear [15], and the solution to this linear problem are the coefficients of the
numerator and denominator, i.e., the poles and residues. An important feature of
the RFP fitter is that the linear minimization problem has a form which enables
estimation of the poles independently of the residues. Because all poles of a mode
(natural frequency and damping factors) are theoretically identical for all transfer
functions a global curve fit with a RFP fitter to several measured transfer functions
can be used increase the statistical accuracy of the poles. A higher accuracy of
the poles also increases the accuracy of the estimated residues.

To work with the RFP curve fitter in ME’scopeMODAL three steps must be
performed by the user. First, choose the frequency bands where modes are suf-
ficiently separated which enables SDOF fits, and choose the bands where modes
are close which therefore requires MDOF fits. Second, the RFP fitter is used to
estimate the poles of the modes in the chosen bands, and finally the residues of
all modes in each DOF are estimated from the global RFP fit.

Figure 8 shows a screenshot of ME’scopeMODAL during a global RFP fit to
the fifteen measured transfer functions in the example from Figure 7. In the right
side of the picture is shown a MDOF fit on the two first modes and a SDOF to
the third mode. In the left side is shown a list of the fifteen transfer functions.
In this list each transfer functions can be checked to show the RFP fitter which
functions to include in the global fit.

Figure 9 shows the ME’scopeMODAL?’s list of the estimated poles and residues
obtained by the global RFP fit. The natural frequencies f; and damping factors
—oy, of the three first modes are listed in Hz, together with the damping ratios
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Figure 8. Global curve fitting to the measured transfer functions with ME’scope-
Modal.
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Figure 9. Estimated modal parameters resulting from the global curve fits shown
i Figure 8.

—0k/wg. The complex residues of all fifteen DOF are given by a magnitude and
argument for each mode. These estimated residues are used in the next step to
computed estimations of the mode shapes.

Calculation of mode shapes from estimated residues

The estimated residues are used to calculate the rigid body motion (flapwise and
edgewise deflection, and torsion) of each cross-section for each modes. Residues
Tk,i; are defined as the product of the modal amplitudes vy ; and vy ; in DOF i and
Jj. Because the excitation point is fixed, i.e., j is the same for all 7 ;;, the modal
amplitudes in the DOF's are proportional to the estimated residues. The rigid body
motion of each cross-section can therefore be estimated from the corresponding
three residues based on the relationship between modal amplitudes and rigid body
motion given by equation (1).

The residues, or modal amplitudes, shown in Figure 9 are complex which con-
forms that the mode shapes of the damped blade are complex (cf. Section 2.2).
For a undamped blade all residues of the corresponding normal mode shapes are
real quantities showing that all points on the blade are in phase. Wind turbine
blades are lightly to moderately damped, and it is therefore assumed that any
phase lags in the complex mode shapes are small and can be neglected. The rigid
body motion in each cross-section for each mode are therefore calculated from
equation (1) by using the real value of the modal amplitudes only:

Uk & |Tk,i5 | cos (arg (rg,:;))  for ¢=1,2,...,L (17)

where L is the number of DOFs (three times the number of cross-sections). The
reason for this simplification is also that theoretical computations of mode shapes
often neglect structural damping. A comparison of theoretical and experimental
complex mode shapes is therefore seldom possible, although they can easily be
estimated from the measured complex modal amplitudes using equation (1).

The argument of the estimated residues in Figure 9 are within 20° of 0° (in
phase) or 180° (in anti-phase). This shows that for this example the relative dif-
ferences between the normal mode shapes and complex mode shapes are less than
6 %. Note that these differences are not considered as measurement errors, however
they will show as systematic differences when comparing theoretical and estimated
mode shapes. Measurement errors are estimated in the next step.

Estimation of accuracy for modal parameters

ME’scopeMODAL does not provide any tool for estimating the accuracy of the
RFP curve fitting parameters, for example by estimating the confidence limits
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of the frequencies, damping factors, and residues. Thus other more approximate
procedures for estimating the accuracy of the modal parameters have been chosen.

Standard deviations of the estimated natural frequencies and damping factors
are calculated from L individual estimates. These estimates are obtained by using
ME’scopeMODAL to perform L local curve fits to each measured transfer func-
tions. The standard deviations based on this procedure are conservative estimates
of the accuracy of the natural frequencies and damping factors obtained from the
global RFP curve fits because local curve fits are less accurate than global fits.

To estimate the accuracy of the mode shapes it is necessary to estimate the
error on the modal amplitudes (residues) and on the DOF geometry (positions
and directions of the three DOFSs) as it is described in Appendix B. The accuracy
of the modal amplitudes cannot be estimated by calculating standard deviations
based on multiple local curve fits because each transfer function only describe one
residue for each mode. Instead it is assumed that the relative error of each residue
Tk, can be approximated by the relative standard deviation of the measured
transfer function H;; in the vicinity of the corresponding modal peak k. The
relative standard deviation of the points in a transfer function is estimated from
the corresponding coherence functions ;; using relation (16). Thus, by taking an
average of the coherence function in a frequency range enclosing each modal peak
of each transfer function, local estimates of the error on the modal amplitudes can
be obtained. The errors on the positions and directions of the DOF's on the blade
must be estimated by considering the accuracy of the setup and measurement of
the geometry (Section 3.3). After the errors on the modal amplitudes and DOF
geometry are estimated, the variance (squared standard deviation) of the mode
shape can be calculated from expression (B.4) in Appendix B.
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4 Results

The performed modal analysis gives estimates of all natural frequencies, logarith-
mic decrements and mode shapes, for the investigated blade up to, and including,
the first torsional natural frequency. The results are based on measurements per-
formed in 11 cross sections along the blade, and error estimates are evaluated for
all the estimated quantities. The estimated natural frequencies and mode shapes
have subsequently been compared with the corresponding natural frequencies and
mode shapes, obtained from a FE model of the investigated blade, in order to
evaluate the state-of-the-art blade modeling capacity (and in addition to gain in-
spiration for further improvements). The basic features of the FE model is briefly
described in Appendix G.

4.1 Natural frequencies

The natural frequencies, obtained from the modal analysis, are presented in Ta-
ble 1 together with estimated uncertainties, expressed in terms of standard de-
viations. Natural frequencies are determined from three acceleration recordings
in each cross section. The values for the natural frequencies, given in the table,
are the average— and standard deviation values'!, respectively, computed based
on all available recordings as described in Section 3.4. In addition, the table also
contains the natural frequencies obtained from the FE-modeling.

Mode Estimated freq. [Hz| | Std. dev. [Hz] || Computed freq. [Hz]
1. flap 1.636 0.0005 1.645
1. edge 2.944 0.006 2.980
2. flap 4.914 0.02 5.258
3. flap 9.734 0.04 10.68
2. edge 10.62 0.05 11.34
4. flap 16.23 0.08 17.02
1. torsion 23.16 0.3 14.64

Table 1. Estimated— and computed natural frequencies.

The standard deviation on the estimated natural frequencies are, as expected,
small. The relative uncertainties, as measured by the coefficient of variation, are
of the magnitude 0.5 % for the bending modes and of the magnitude 1.5 % for
the torsional mode.

The deviation between experimental results and the results from the FE mod-
eling is seen to increase with increasing frequency. The relative deviation is of the
magnitude 0.5% for the lowest bending mode increasing to of the magnitude 9%
for the higher bending modes. For the torsional mode, however, the relative de-
viation is of the magnitude 60%, indicating a difficulty in modeling the torsional
stiffness in the ANSYS model.

4.2 Damping characteristics

The damping characteristics derived from the modal analysis, as expressed by the
logarithmic decrement, are presented in Table 2.

HNote, that if the temperature changes during the experimental process, this might effect the
estimated standard deviations.
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Mode Estimated log. decrement [%] | Std. dev. [%)]
1. flap 1.78 0.08
1. edge 3.60 0.01
2. flap 2.02 0.01
3. flap 2.47 0.03
2. edge 5.57 0.04
4. flap 3.23 0.03
1. torsion 5.81 0.06

Table 2. Estimated damping characteristics expressed as logarithmic decrement.

The damping is as expected, for a given type of mode (flap dominated, edge
dominated or torsion dominated), increasing with increasing natural frequency.
As previously mentioned, the investigated blade has been designed with an es-
pecially high edgewise damping, which is also reflected in the measured damping
characteristics.

Determination of the damping properties is usually considered to be somewhat
uncertain, which relates to the fact that the damping characteristics are small
quantities. For the present results, however, the relative uncertainty (measured
in terms of the coefficient of variation) is only of the magnitude 1%, except for
the first flapwise mode, where the estimated coefficient of variation turned out
to be of the magnitude 5%. The damping depends on temperature, and therefore
the apparent uncertainty will increase if the temperature is changing during the
measuring campaign.

4.3 Mode shapes

The mode shape results, associated with the lowest 7 blade natural frequencies,
are illustrated in Figure 10 — 16. For each particular mode, the modal deflection
has been resolved in a flapwise, an edgewise and a torsional deflection, according
to the definitions given in Chapter 2. For each deflection component, the discrete
results obtained from the modal analysis have been compared to the eigenforms
obtained from the FE-modeling. In order to facilitate the comparison, the cross
section rotation, associated with the FE-modeling, is defined as the rotation of a
line connecting the leading edge with the tailing edge for a given cross section.
In analogy, the bending deflection is defined as the deflection of a radial spline,
along which the longitudinal web is attached to the blade surface. Note, that
this definition is not necessary kinematic consistent and analog to the definition
presented in Appendix A for the modal analysis.

A mode shape is uniquely determined apart from an amplitude. For the present
illustration it was, arbitrary, chosen to normalize the dominating tip deflection
component in each mode to 1 m in case of a displacement and to 10 deg in case of
a torsion. The torsion, however, is not well determined in the tip section. Due to the
very short cord length associated with this particular cross section, it was necessary
to apply a different support structure here compared to the other cross sections.
Caused partly by smaller dimensions of this more primitive measuring bridge,
partly by difficulties with fixing even this measuring bridge to the tip cross section,
the torsion resolution in the tip turned out to be unsatisfactory. Consequently, for
the normalization, the tip torsion has been evaluated by extrapolation of the
nearby cross-section torsional values.
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In general, the mode shapes extracted from the modal analysis display the ex-
pected smooth behaviour without notable scatter except for the torsion of the tip
cross section. The reason for the unsatisfactory representation at the tip is com-
mented on above. For all the investigated mode shapes, the dominating deflection
component resembles the same general features, comparing the results from the
modal analysis with the corresponding results from the FEM analysis. However,
the agreement is better for the deflection components associated with low nat-
ural frequencies than for deflection components associated with higher natural
frequencies. The same tendency was also observed in the estimation of natural
frequencies.

Discussion

The test stand has a certain (small) flexibility. This flexibility is neglected in the
FE modeling of the LM 19 m blade as described in Appendix G. The effect from
this deviation in the boundary conditions at the blade root between experiment
and FE-model, respectively, can be identified from the present results. The mode
shape gradient in the root part tend to be larger for the experimental results
than for the FEM results. The neglection of the elasticity of the tip brake mech-
anism in the FE modeling, however, does not seem to cause differencies between
experimental- and FEM results — hence it follows that this flexibility does not
affect the mode shapes.

The structural coupling, between the dominating deflection and the two re-
maining (secondary) deflection components, is identified for all the analysed mode
shapes both experimentally and numerically. The coupling between bending de-
flection and torsion requires special attention due to the direct implications for
the aerodynamic loading. This coupling is of course especially important for the
mode shapes associated with the lower and most important natural frequencies.
For these modes, a tip deflection of 1 m corresponds to a torsion of the magnitude
0.5 deg due to the structural coupling.

Aeroelastic calculations are traditionally based on a Timoshenko beam model-
ing of the wind turbine blade. Although the bending torsion couplings usually are
included in the beam representation, the correct specification of these structural
couplings is a delicate matter. The magnitude of the observed bending/torsion
coupling effects suggests, that these may significantly affect the aerodynamic load
characteristics of a wind turbine blade. This emphasizes the need for careful spec-
ification of such coupling effects in aeroelastic computations. Also the structural
coupling between the two bending components is essential for correct modeling of
aerodynamic damping [13]. This coupling is often included in the aeroelastic model
by introducing a structural pitch. The relevant structural pitch for the LM 19 m
blade can easily be derived from the present results.

In general, the deviation between experimental and modeled secondary deflec-
tion components is larger than the difference between the corresponding primary
deflection components, reflecting that these deflections are difficult to resolve ex-
perimentally (small signal levels) as well as numerically (lack of sufficiently detailed
information on the material properties). As with the primary deflections, there is a
tendency towards increasing deviation between experiment and numerical results
with increasing frequency. Except for the two modes associated with the highest
natural frequencies, the numerical model is seen to over estimate the structural
couplings.
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5 Conclusion

The present investigation has demonstrated that essential dynamic properties of
wind turbine blades, like natural frequencies, damping characteristics and mode
shapes, can be experimentally determined by use of the modal analysis technique.
Different experimental procedures have been considered and the most appropriate
of these has been selected. Although the comparison is based only on measure-
ments on a LM 19 m blade, the recommendations given are believed to be valid
for other types (sizes, designs, ...) of wind turbine blades as well.

The reliability of the selected experimental analysis has been investigated by
estimating the unsystematic variations in the experimental findings. The unsys-
tematic deviations have been quantified in terms of standard deviations and co-
efficients of variations. In general, the estimated standard deviations on natural
frequencies and damping characteristics indicate a high degree of reliability. For
the modal shapes, however, the accuracy vary with the mode number. For the
dominating deflection direction, associated with a particular natural frequency,
the uncertainty is very modest. For the two ”secondary” deflection directions the
standard deviations on the cross sectional deflections are somewhat larger — espe-
cially for the torsional deflection.

In addition to the unsystematic variations, systematic errors caused by the
experimental technique (e.g. elasticity of the blade support, heavy sensor setup
mounted on the blade, or errors in the measurement of the applied reference axis)
as well as the signal processing (windowing etc.) may occur. No attempt has been
made to quantify such errors.

The detailed analysis of the LM 19 m blade has been compared with results
from a FE-model of the same blade. For some of the higher modes substantial
discrepancies between the natural frequencies originating from the FE-modeling
and the modal analysis, respectively, are observed. This is especially pronounced
for the torsion mode indicating a defective modeling of the torsional stiffness.
Turning to the modal shapes, the agreement between experimental results and
the present FE-model is generally good concerning the dominating deflection,
indicating that the relative stiffness distributions applied in the FE-model are
satisfactory. However, large discrepancies are seen in the "secondary” deflection
directions which may be due to both the relative high experimental uncertainty
in the determination of those, and to an insufficient representation of structural
couplings in the FE-model.

The performed comparison between experimental— and FEM results emphasizes
the need for this kind of experimental results to refine the modeling technique.
Also the observed uncertainty in some of the experimental results calls for im-
provements of the experimental technique.

The main disadvantage of the proposed impact test is that the force excitation
level is not invariant from one test to another. As a consequence the global response
of the global structure, including linear as well as non-linear components, change in
an unpredictable manner. Non-linear components of the structural response might
be important and can potentially create errors which are difficult to quantify. The
last disadvantage is the possible variation of the force direction from one test to
another (which, however, is reduced using the guided hammer) introducing errors
in the evaluation of the structure egenvectors.

In order to overcome the above mentioned problems with manually operated im-
pactors, electromechanical slave hammers can be used [2]. The hammer works with
the principle of an electromagnet, where two coils are independently pushing and
pulling a piston. The coils are connected to power circuits that produce rectangu-
lar signal of current, with predefined levels, duration, and time delay. This means
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desirable possibilities to control velocity and retardation just before the impact, in
order to avoid multiple rebounds. A ”cleaner” impact together with the ability of
producing replicated impacts with repetitive characteristics, can here significantly
improve the force/response correlation compared to the manually operated ham-
mer, especially in the lower frequency range. An additional feature, that comes
with the control, is the possibility to simultaneously operate several impactors,
resulting in multipoint excitation (polyreference method). The idea of a repetitive
slave hammer can also be realized using pneumatic, or hydraulic actuators (see
for example [10]).

In addition to potential future modifications of the exciter system, larger wind
turbine blades, with their very low natural frequencies, may require use of DC-
accelerometers (or other types of low frequency sensitive accelerometers) instead
of the piezoelectric accelerometers used in the present investigation, in order to
improve the quality of the estimated transfer functions and thus the quality of the
modal analysis.
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A Discrete blade motion

In this appendix it is shown how to calculate the rigid body translation and
rotation of a cross-section based on three amplitudes of vibration measured in three
degrees of freedom (DOFs). The configuration of DOFs influences the accuracy
of the mode shape estimations. This influence is discussed based on a sensitivity
analysis of the derived expressions.

Figure 17 shows a cross-section with three “transducers” measuring the trans-
lation in three DOFs given by their directions (o;, @;t1, @;q2) and positions
(r;,rit1,Tir2) With respect to the pitch-axis (cf. Figure 1). When the cross-section
is undergoing a rigid body motion given by translations u, and u,, and a rotation
6 about the pitch-axis, the displacement vector w; for measurement point ¢ is:

wi{ux }+(TI)ri, (A1)
Uy
where I is a two by two identity matrix, and T is a transformation matrix:
cosf —sinf

B [ sinff  cosf ] ' (A-2)
The measured amplitude in DOF number i is z;, which can also be considered as
the projection of vector w; onto the direction of the DOF «;. Assuming that the
rotation of the cross-section due to torsion is small (f < 1), a linear relationship

between the rigid body motion and the amplitude x; is obtained

T = Uy COS +Uy sin o+ (1] sinay — rf cosa;) 0. (A.3)
Similarly, the measured amplitudes in all three DOF's yields a set of three equations
which by inverting can be written as

Uy €T;
Uy =A Ti41 , (A4)
6 Tiy2

where the matrix A is given by
-1
Yy

7 COS 0y

_ : : y
A= cosa;p1 sinagyr g sinaipr — 1 cosaiqg . (A.5)
COSQlita Sin Qo rﬁrQ sin 42 — réﬂrg COS (Vj+2

COS (v; sin o; risino; —r

Note, that the rigid body motion of the cross-section is not described by rela-
tion (A.4) for all configurations of DOFs because the matrix A may not exist.
Other percussions must also be considered (cf. Appendix B).

Figure 17. Rigid body motion (ug, uy, 0) of a cross-section given by three degrees

of freedom (x;, Tit1, Tit2).
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B Errors on mode shapes

In this appendix it is shown how to derive the standard deviations on mode shapes
due to error on estimated modal amplitudes and on the configuration of DOFs.
From this derivation it is then shown how to optimize the configuration of DOFs
for minimum error.

B.1 Expression for the error on mode shapes

To derive an expression of the error on a mode shape vector u = {ug, uy, 017 of
each cross-section, it is assumed that the error on the estimated modal ampli-
tudes and geometry of the DOF configuration are small. Defining a book-keeping
parameter for small quantities as € < 1 this assumption can be written as

X =X+eAx, r1;=T;+cAr;, and «; = a;+eAa;, (B.1)

where the bar denotes estimated quantities, and vector x = {;, zi41,Zis2}?
contains the modal amplitudes of the particular cross-section which errors are
given by Ax. The error on the position and direction of the three DOFs is given
by Ar;;, and Aa;yg with £ =0,1,2.

The modal amplitudes and DOF geometry (B.1) are used to estimate a mode
shape vector which will be subject to error described as i1 + eAu. To derive an
expression for Au the equation (B.1) is inserted into equation (1) which, after
Taylor expansion of transformation matrix A (A.5), yields

2

_ A 0A
u+eAu<A+eZaa Arl+k+ezay ArY,
k=0 Tith =0 itk

0A o) o
+e Z Borir Aty + O(e )) (x+eAx), (B.2)

where O(e?) denotes higher order terms, and bar over matrices show that they are
evaluated at the estimated DOF geometry r;y; and @;4 with £ = 0,1, 2. Collect-
ing terms of order € shows that 1 = Ax which corresponds to equation (1) used
for calculating the estimate of the mode shapes in each cross-section. Collecting
terms of order €' yields

OA OA 2 TOA
Au= |AAX + Z : Ary g + Z o7, Ar Borir Aapr | X
im0 O k=0 k=0

(B.3)

where matrix AX = diag{Az;/Z;, Ax;y1/Zir1, Axiyo/Tiy2} contains the relative
errors on the modal amplitudes. The sum of matrices in the brackets of (B.3) is
subsequently denoted AA.

Because the sign of the errors on modal amplitudes and DOF geometry is un-
known we use equation (B.3) to derive the wvariance matriz of the errors on the
mode shapes as function of the relative variance on the modal amplitudes and the
absolute variance on the position and direction of the DOFs. Using that x = A~ 'a
the variance matrix of the errors on the mode shapes becomes

AuAu” = AAA 'un” (AAAY) . (B.4)

The standard deviations on the mode shapes can now be calculated as the square
root of the diagonal elements of this variance matrix AuAu?.
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B.2 Optimal configuration of DOF's

The optimal configuration of the DOFs is evaluated by its ability to describe the
rigid body motion of the cross-section with minimum error. A few examples of the
“optimization” of a basic configuration with two flapwise DOF's and one edgewise
DOF is now given. For a wind turbine blade, the torsion in a cross-section is
most sensitive to such errors because it is a small quantity (cf. Chapter 4). The
examples therefore focus on the ability of the configuration to describe torsion.
The initial directions and positions of these DOF's in the basic configuration are
listed in Table 3. Similar optimizations of other configurations of DOF's can easily
be performed analogously.

DOF no. i+2 z i

y DOF no. i+1 i 0.5 0.0 0
@ i+1 0.5 00 90

DOF no. i i+2 —-0.5 0.0 90

DOF‘ no. | r¥ [m] | r¥ [m] | oy [deg]

Table 3. Example of a basic configuration of DOFs in a cross-section.

Sensibility to errors on modal amplitudes

Equation (B.3) shows that errors on the mode shapes due to errors on the esti-
mated modal amplitudes are proportional to the elements of the transformation
matrix A. Figure 18 and 19 shows the elements used for calculating torsion about
the pitch-axis A3y, A2, and Ass versus the position rf,, and direction a;12 of
DOF number i 4 2 in the basic configuration.

Figure 18 illustrates that moving the flapwise DOF number i 4 2 away from the
other flapwise DOF decreases the absolute values of the elements Azy and Ass.
Thus, errors on the estimated torsion # in a mode shape due to errors on the
modal amplitudes decreases with increasing distance between the flapwise DOF's.

Figure 19 shows that the optimal direction of DOF number ¢ 4+ 2 in the basic
configuration is flapwise at 90°. The element A3 has a minimum absolute value
at a; 12 = 90°, whereas the element Ass is independent of a; 5. The extremum of
Ass is flat showing that a deviation of a1 o from 90° will only have a minor effect
on Aszs. However, Figure 19 also shows that the estimated torsion will be affected
by the modal amplitude in the edgewise DOF number ¢ through the element Asy,
if the direction of DOF number 7 + 2 is not purely flapwise. This will increase the
risk of errors due to errors on the estimated modal amplitudes.

Sensibility to errors on directions and positions of the DOF's

Equation (B.3) shows that errors on the mode shapes due to errors on the direc-
tions and positions of the DOF's are proportional to the derivatives of the elements
of the transformation matrix A (A.5) with respect to these parameters of the con-
figuration.

Figure 20 shows derivatives with respect to the direction and position of DOF
number i+2 versus the same direction and position. Similar to the previous section,
Figure 20 shows that increasing the distance between the two flapwise DOFs
and directing DOF number ¢ 4+ 2 in the flapwise direction of 90°, decreases the
sensitivity of the estimated torsion in the mode shapes to errors on the direction
and position of this DOF.
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C Optimum transfer function

In the absence of noise, the response of an ideal linear constant parameter physical
system to some input (forcing) can be expressed as a convolution of the system
impulse response function and the particular input [9]. Due to the convolution,
this relation is conveniently expressed in the frequency domain, where the Fourier
transform of the response equals the product of a transfer function and the Fourier
transform of the system input (cf. equation (5)). The transfer function is simply
the Fourier transform of the system impulse response function.

Deterministic single-input/single-output system

Let us consider the simple single-input/single-output system defined as the forcing
(acting in DOF number j) of a wind turbine blade and the respective response
of the i’th DOF. In the ideal situation, with absence of noise in input— as well
as output signals, these signals are of a pure deterministic character'?, and the
corresponding Fourier transforms are consequently not encumbered with statistical
uncertainty. The ideal transfer function, H;;, can thus be computed directly from
the definition given in equation (5), which states

Hij(w) = Xi(w)/Fj(w), (C.1)

where X;(w) denotes the Fourier transform of the output signal, and Fj(w) is the
Fourier transform of the input signal, respectively.

Single-input/single-output system with extraneous noise

Unfortunately, the system described above is a theoretical abstraction. For the real
physical wind turbine blade system, the recorded forcing, as well as the recorded
response, will consist of the ideal signal superimposed by an extraneous noise
contribution caused by the recording system. Considering the forcing acting in
DOF number j and the response measured in DOF number i, the situation is
illustrated in Figure 21.

N/ () N* (@)

Fi(@) — |:|ij(“’) — X (&) X (@)

Fi (@)

Figure 21. Single-input/single-output system with extraneous noise.

Decomposing the observed force signal, f;(t), into an actual signal, f;(¢), and

a noise contribution, n]f (t), we have

t _r. f
fj(t) = f](t)+nj (). (C.2)
12For the present investigation transient deterministic excitation has been selected; cf. Chapter
3. In case continuous excitation of random character is selected, estimation of the system transfer
function can be performed using the algorithm dedicated for signals including noise components.
This algorithm is addressed in the last part of this Appendix.
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Analogous, decomposing the observed response signal, zf(¢), into an actual sig-
nal, z;(¢), and a noise contribution, n¥(t), we obtain

2h(t) = z;(t) +n¥(t). (C.3)

The Fourier transforms of the apparent force— and response signals, respectively,
are obtained directly from the equations (C.2) and (C.3) as

Fi(w) = Fy(w) + N (@), (C4)
Xi(w) = Xi(w) + Nf (w),

where an upper index t refers to the apparent (or total) signal, N Jf denotes the
Fourier transform of the noise on the input signal, and N denotes the Fourier
transform of the noise on the response signal.

We now turn to estimation of the system transfer function based on the observed
signals. Different possibilities exists. A straight forward possibility is to general-
ize equation (C.1) by replacing the Fourier transforms of the actual signals with
the Fourier transforms of the apparent signals. The associated estimated transfer
function, H’ij (w), is thus expressed by

x
() = DN (©5)
Fy(@) + N (@)

However, this estimation strategy has some serious draw backs. First of all, it
is only based on one particular realization of the random noise contribution, and
thus only a single (raw) estimate of the Fourier transforms of the noise contri-
butions. The consequence is, that these Fourier transforms, in general, will be
encumbered with significant statistical uncertainty. An acceptable estimate of the
transfer function is thus only achieved, if the input noise and the response noise
are (very) small relative to the input signal and the response signal, respectively.
In other situations the transfer function estimate, given by equation (C.5), will
not be appropriate to characterize neither the ideal system, nor the recorded sys-
tem. Even though, the requested relationship, between the Fourier transforms of
the observed input— and output signals, are identically satisfied by the transfer
function, estimated according to equation (C.5), for this particular realization of
recorded input— and output signals, the same transfer function estimate, applied
to other realizations of input— and response signals, would most likely lead to
significant inconsistencies.

A more appealing approach is to aim for a transfer function estimate that,
in an average sense, will give the best possible (linear) characterization of the
relationship between the observed input— and response signals — the optimum
transfer function. This is the topic for the remaining part of this Appendix.

The optimum transfer function estimate

Let H;j(w) be any estimated (linear) transfer function connecting the system
input signal with the system response signal. Due to the random noise components
inherent in both the input signal and the response signal, it is not possible to define
a transfer function that reflects a perfect correlation between arbitrary realizations
of the input— and response signals. However, as indicated above, we can determine
a transfer function that provides the best possible correlation in an average sense.
For this purpose, let the observed system be described by

X{(w) = Hij(w)F}(w)+ N (), (C.6)
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where the residual noise term N, J (w) accounts for the lack of perfect correlation
between an arbitrary forcing acting in DOF number j and the corresponding
response measured in DOF number 7. Note, that no assumptions has been put on
this noise term. Isolating the residual noise term from equation (C.6), the following
relation is obtained

N7 (w) = X w) — Hij (@) Fi(w). (C.7)

The residual noise term will, in general, be a complex quantity like the other
terms in equation (C.7). The size of the noise term, in an energy sense, is conse-
quently obtained by multiplying N; 7 (w) by its complex conjugate given by

N (w) = X (w) — Hij (@) Fj (@), (C.8)

2

where an ”overbar” denotes complex conjugate. The magnitude of the residual
noise component is then given by

INJI ()2 = NP9 ()N} ()

7

—t - —t

= X)X} (W) ~ XE@)H (@) Fy(w) -

?

(C.9)

_t A A ~ —
X (W) Hij () Fj (w) + Hij(w) Hij () Fj (w) F ().

Following the definition of (one-sided) spectra, as given in [9], for sample records
of length T, the autospectrum of the residual noise noise component is expressed
by

SEFw) = Jim 2 (N7 @N W) (©.10)

T—o00
where (-) denotes ensemble averaging. Introducing equation (C.9) in equation (C.10),

the residual noise autospectrum is expressed in terms of the (observed) input— and
response spectral quantities as follows

SER(w) = S5 X" (w)—Hyj () S5 (W)= Hij(w)SE T (@) +-Hij () Hij () SE T (w)
(C.11)

where the lower indices, 7 and j, indicate that the forcing is applied in DOF
number j, and the respective response is observed in DOF number . Sf;tF ' (w)
denotes the apparent input autospectrum, and Si)]{ Xt (w) is the apparent response
autospectrum. The cross spectra between the apparent input and response signals,
denoted by Sil;tX ‘ (w) and SZ-); F (w), respectively, are defined by

SET (W) = lim (X, (W) FHw)),
(C.12)

tyt . 2 =t
55 (w) = lim —(Fj(w)X](w)).

From equations (C.12) the following relation between cross spectra is derived

+ + _XtFt
SEX (w) =5 (w). (C.13)

We now return to the expression for the residual noise autospectrum, as given
in equation (C.11), and define the optimum transfer function as the least squares
estimate, H;;(w), that minimizes SHEE(w) over all possible definitions of (linear)
transfer function estimates.
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All quantities in equation (C.11) are real valued, except the transfer function
and the cross spectra. Decomposing the complex quantities in real and imaginary
parts, denoted by upper indices R and I, respectively, we obtain

Hw‘(b«)) = ﬁg(w) - Zﬁ'{](w)a

Hij(w) = ﬁg(w) + ZIA{zI](w),

(C.14)
tyt tyt R . tytd

55 X (w) = 55 X (W) 7155 X (W),

t ot —Ftxt tytR J—

Sy (w)=8;" (W) =85 (W) +iS5 Y (w).

Introducing equations (C.14) in equation (C.11) finally yields
RR Xtxt R rext it 294 rext!
Sii (W) =85 (w) — 2H;;(w)S;; (w) — 2H;;(w)S;; (w) + (C.15)

(ﬁg(wf + A (w)2> SEF ().

Note that, as a check on the calculations, the autospectrum of the residual noise
come correctly out as a real quantity. The optimum transfer function estimate is
now defined by equalizing the partial derivatives of Sf;?R (w) with respect to ﬁf;‘ (w)
and I:IIIJ (w), respectively, to zero and subsequently solve for I:[fj(w) and ﬁé (w).
Thus

8SRR(w) tyt R ~
—Y = 98X (W)) 4+ 2H (W) SEF (w) =0,
8H£(w) ij ( ) ’L]( ) ij ( )
v ) (C.16)
65 w txtd ~
——— = 255 (W) + 2H ] (w)S]F (w) =0
T ij ij @ )
OH;;(w)
from which
tytR
. SEX
Hi]}(w): 5 Tt (w)7
SHT (w)
s (C.17)
tht
HL(w) = M
EA AL
The optimum transfer function estimate is thus given by
R SEtXt
_ 5y @) (C.18)

ij(w) = W

The coherence function associated with the optimum transfer function

In addition to the benefits described above, the recommended definition of the es-
timated transfer function, as expressed in equation (C.18), also suggests a straight
forward interpretation of the coherence function between the observed input— and
the observed response signal, which will turn out be be very useful in the evalua-
tion of the quality of performed measurements.

By introducing the optimum transfer function, given by equation (C.18), in the
expression for the residual noise autospectrum (C.11), the following relation is
obtained
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Lot “ _Ftxt
St w) = 85 % (W) = Hij(w)Sy; ~ (w)

= XY W) (1 55 " )P )
ij

S5 X W) SHT ()

ij

=55 W) (1= ) (C.19)

where the coherence function between the observed input— and the observed re-
sponse signal is defined by

Fixt2, |S£‘tXt(W)|2
Yij (w) = txt t Rt . (0.20)
! SE X (W)SH T (w)

As seen, equation (C.19) quantifies the residual noise entirely in terms of the
spectral characteristics of the observed input— and response signals. For perfect
”reproducibility” — that is zero scatter in response signal for fixed transfer func-
tion — the autospectrum of the residual noise equals zero, whereby equation (C.19)
reduces to 'ygtxﬂ(w) = 1. Note, that the computation of the coherence function
and the optimum transfer function is largely based on the same spectral charac-
teristics — having determined the optimum transfer function, the amount of extra

computations to calculate also at the coherence function is consequently limited.

Correlation-properties related to the optimum transfer function esti-
mate

Using the optimum transfer function as our system-transfer function, it can be
shown that the residual noise is uncorrelated with the observed input signal as
well as with the coherent part of the response signal.

NI ()

Fl(@) — H(@) [—X"(w) X! (w)

Figure 22. Single-input/single-output system with residual noise.

Referring to Figure 22, the coherent part of the observed response signal, X f"h(w),
is defined as

XMw) = Hyj(w)F(w), (C.21)

J

whereby the residual noise term, utilizing equation (C.6), is expressed as

NP9 (w) = Xi(w) — X7 (). (C-22)
Thus
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t . 2 =t 17
55‘ R(W) = Tlgféo f<Fi(W)Ni 7)
— lim 2 (F (W)X () — lim = (F (@)X (w))
T—oo 1 ¢ ¢ T—oo T ¢ ¢
tyt . 2 ¢ .
=S5 % (w) - Jim f<Fi(W)Hij(w)Ff(w)>
= SN () — @S5 F @) = 0. (C23)

which proves that the residual noise is uncorrelated with the observed input signal.
To prove that the residual noise is uncorrelated with the coherent part of the
response signal, simply note, from equation (C.21), that the coherent part of the
response signal is given as a (constant) transfer function multiplied by the observed
input signal. Thereby

coh . 2 = Tt J
Sz)j( R(w) = Th—>n;o T(H”(u})FI(W)N; ]>

= . 2 -t r:J
Hij(w)Tlgréo f<Fi(W)Ni 7)

= Tij(w)sf;tR(w) =0, (C.24)

where equation (C.23) has been utilized.

Characteristics of the optimum transfer function estimate

The last subject of interest, related to the choice of the optimum transfer function

estimate, is how this estimate compares with the ideal transfer function that cor-

responds to the real physical quantities, where the noise contributions are absent.

Let us consider the optimum transfer function, as expressed in equation (C.18),

and let us elaborate a little on the quantities entering this expression.
Introducing equation (C.4), the numerator is expressed by

SEX (W) = lim %(Fi(w”mf (@) (X;(w) + N7 (@)))

T—o0
= SEX () + SEN" () + SY X () + SNV (w). (C.25)
Analogously, introducing equation (C.4) the denominator is expressed by

Sg‘F‘ (w) = lim %<<Fz(w) + N{ (w)) (Fz(w) + Nif(w))>

T—o0
= SEF (W) + SEN" (W) + SN F(w) + SYN (). (C.26)

Under the present experimental conditions, F;(w) is associated with a determin-
istic signal (the force established by the hammer hit). The ensemble averaging is
especially simple for deterministic signals, as

FN®( N _ 1: 2= - = . 2 .
SijN (w) = Tlgr;o<?Fl(w)Nj (W)) = Fi(w) lim <?Nj (w)) . (C.27)

Now, a characteristic for a noise signal is a zero mean. Thus

(nj(t) =0, (C.28)
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which, due to the linearity of the ensemble mean operator, as well as of the Fourier
transform operator, is equivalent with

(NG (w))

Introducing equation (C.29) into equation (C.27) yields

0. (C.29)

Sf;N””(w) =0. (C.30)

Referring to Figure 21 it is easily seen that X;(w) is associated with a determin-
istic signal when F;(w) is associated with a deterministic signal. It is thus straight
forward, by considerations analog to those for Sil;N “(w), to show that

NfX
Sii T (w)=0,

SEN (w) =0, (C.31)

SN F(w) = 0.

If further, the noise associated with the observed input signal is assumed un-
correlated with the noise associated with the observed response signal, then the
following relation holds

NIN® _
Si; " (w)=0. (C.32)
Introducing equations (C.30)—(C.32) into equations (C.25)—(C.26) we obtain

Ftxt FX
Sij (w) = Sij (w), (©33)
t ot fnf '
SE @) = SEM W) + SN (W)

Combining equations (C.33) with equation (C.18) we finally arrive at the fol-
lowing relationship between the ideal system transfer function and the estimated
transfer function

PP B ) B 1
1] - SFtFt(w) - SZ_};F(W) —I—Si]}[fo(w) - - S{}ffo(w) '
ST (w)

(C.34)

j

Thus, for a situation with non-correlated extraneous input— and response noise,
the optimum transfer function estimate, as based on observed quantities, is a biased
estimate of the ideal transfer function. The inherent bias, in the estimated transfer
function, depends on the input signal/noise ratio only, and tends consistently to
zero for this noise contribution approaching zero.

If, instead of the present deterministic transient hammer excitation, an exci-
tation technique based on continuous excitation with a random character forcing
was applied, then an expression identical to equation (C.34), for the estimated
optimum transfer function, is achieved, provided that the noise, superimposed
on the response signal, is uncorrelated with the ideal input signal (meaning that
Sf;Nx (w) =0), and that the noise, superimposed on the ideal input signal, is un-
correlated with the ideal input signal (Sf;-Nf (w) = Si]}[fF(w) = 0) as well as with
the ideal response signal (Sﬁfx(w) =0)

As seen from equation (C.19), the coherence function quantifies the amount of
scatter in the results introduced by the presence of extraneous noise sources in the
observed signals. Computing the coherence between observed input— and output
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signals, according to equation (C.20), we shall now see how this function reflects
the extraneous noise sources as described by equations (C.2) and (C.3). We adopt
the same assumptions as introduced in the treatment of the optimum transfer
function estimate, and equation (C.33) thus still applies, whereby

S5 @) = 185 (@) 2. (C.35)

Moreover, equation (C.25) reduces to

SEF (@) = SEF @)+ (), (C.36)

and finally the (observed) response autospectrum is reduced to

SEX @) = Jim Z((Kalw) + W (@) (Kilw) + N7 ()

T—o0
XX XN® N®X N®N®
=55 W)+ 557 (W) +8; (W) +S; " (w)
XX N®N®

where, for the last identity (if random excitation is applied), the presumptions
have been extended to also include no correlation between the ideal response signal
and the imposed noise on the response signal (Si)wa (w) = Sng(w) = 0). The
resulting expression for the coherence is obtained by introducing equations (C.35)-
(C.37) into equation (C.20)

W) = erp Nfo|S£X(w)|2
(Sij (w) + S (w)) (Sf]{X(w) + Sg N (w))
_ 7 W)

1
= Sf\;fo(w) Slg\jerz(w) ’
(1 + Ze?) (14 )

as the coherence between the ideal signals (cf. equation (C.19)) is identical 1 for
linear systems. The deviation from the ideal value (i.e. 1) of the coherence function
is thus due to the presence of extraneous noise on the input signal as well as on

(C.38)

the response signal. The resulting coherence function depends explicitly on the
signal/noise ratios related to both the input signal and the response signal. Note,
that it is not possible to separate the integrated effect of the extraneous noise into
the involved noise components, based on computation of the coherence function,
unless one of the noise sources is explicitly known a priori.
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D Uncertainty in spectral estimates

The (expected) spectral quantities introduced in Appendix C are defined in terms
if an ideal ensemble averaging procedure. However, the concept of ensemble av-
eraging is an abstraction, which in practice is replaced by an averaging over a
finite number of observations displaced in time, assuming that the stochastic pro-
cess in question (noise, random excitation and corresponding random response,
etc.) is a stationary and ergodic process. In addition to the uncertainty caused by
natural variability of the observed forcing— and response signals, as dealt with in
Appendix C, the estimation of the (expected) associated cross— and autospectra
consequently further introduces statistical uncertainty.

The dependence of the statistical uncertainty on the number of observations (on
which the performed averaging procedure is based) is addressed in the following,
assuming only that the available observations are statistical independent.

Let us, as an example, focus on the evaluation of the cross spectrum between
the observed forcing (applied in DOF number i) and the observed response (at
DOF number j). According to the definition given in equation (C.12), we have

SEF (W) = lim — (X (W) FHw)) - (D.1)

In practice the limiting process, included in definition above, is omitted, and a
suitable (fixed) size of the observation time T is selected, reflecting the required
lower cut-off frequency. This approximation does not affect the statistical uncer-
tainty on the estimates, but relates only to the available frequency range. Thus,
in practice, the definition given in equation (D.1) is replaced by

Ayt ot 2 —t

S 1 w) = 7 M Xi@)Fi)] . (D.2)
where the spectral estimate is denoted by 5’5 F (w), and the mean value estimate
operator M|[] is defined by

N
—t 1 —t
M [X@)F @) =5 2 (TF ), | (D.3)
1=1

where N denotes the number of (statistical independent) recordings. The necessary
total rec?rding time is then at least NT'.

Let X, (w)F}(w) follow some (arbitrary) probability function with mean value
2 »- Denoting a ”true” mean value operator by E[], the
random error on the spectral estimate (D.2), expressed in terms of the variance
of the spectral estimate, o g r (w)?, is given by

ij

Uraw and variance o

ogxir (W) = B {(s@” (w)— E [S)J(F (w)})j . (D.4)

Utilizing equations (D.2) and (D.3), the second term in equation (D.4) can be
reformulated as
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E[$¥'7 W) =B

When, as assumed, (Y: (w)F jt (w)) are statistical independent quantities, the
1

following holds

N
= Z Ufaw = NO'an ’ (D7)

where the linearity of the operator E[-] has been been utilized and §;,, is the
Kronecker delta. Introducing equation (D.7) into equation (D.6) finally yields

o‘gigt}?f (w)2 = %%Uzaw Y (D.S)
where N = 1 corresponds to the spectral raw estimate.

Equation (D.8) shows, that the statistical uncertainty on the estimate of the

cross spectrum is inversely proportional to the number of averages used in the

estimation, and further that this random error tend to zero for the number of
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averages approaching infinitely (as expected). In practice, usually only a limited
number of averages is necessary to obtain sufficient accuracy (say, of the order of
5).

Analog results for estimates of autospectra are easily derived from the above
derivation by replacing Yt (w)F}(w) with Yt (W)X} (w) or F: (W) Ff (w).
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E Alternative experimental strate-
gies

Different alternative experimental strategies have been investigated during the
course of the project in order to establish the most suitable experimental procedure
for wind turbine blade testing. These are briefly accounted for in the present
appendix.

Apart from the impact excitation concept, accounted for in Chapter 3, two
alternative exitation principles have been considered — snap back excitation and
random exitation using an electromagnetic exciter. In addition, different analysis
strategies were associated with each of these approaches.

E.1 Snap-Back Experiments

In snap-back experiments the structure is elastically deformed and then instan-
taneously released — the structure snaps back. Depending on the contribution of
the individual mode shapes to the initial structural deflection of the blade (and
possible non-linearities in the structure), the derived free oscillations contain a
range of mode shapes, each vibrating with their respective natural frequencies.

Experimental procedure

One end of a fishing line, with an adequate breaking strength, was attached to the
blade — the other end was, through a force transducer, attached to a winch. The
winch was subsequently pulled so that the blade was conveniently deflected, until
the fishing line finally fails, and the blade snapped back. The associated jump in
the measured force was used to trigger the measurements.

The motion of the blade was measured using two reference accelerometers lo-
cated at the blade tip, and three accelerometers mounted on the conventional
measuring bridge (cf. Figure 4) at the cross section in question.

The measurements were repeated with the three accelerometers, resolving
flapwise—, edgewise— and torsional deflection, placed in 10 different cross section.

Analysis procedure

The applied analysis method differ from the one described in Chapter 3. As no
forcing is recorded, the analysis can not be based on the concept of transfer func-
tions. Instead, the analysis is performed in the time domain, using the reference
measurement to link the modal decompositions originating from different cross
sections.

Using the algorithm described in Appendix A to relate cross sectional DOF’s
with cross sectional displacements, the basic idea is to express a measured response
in terms of a modal expansion as formulated in equation (7). The modal expansion
is truncated by selecting a suitable number of relevant mode shapes. Each term
in the truncated modal expansion contains a modal amplitude, a modal damping
factor (essentially the real part of the eigenvalues associated with the eigenvalue
problem (3)), and a natural frequency (the imaginary part of the eigenvalues as-
sociated with the eigenvalue problem (3)). As the modal amplitudes are complex
quantities, accounting for weightning of the individual modes as well as mutual
phase shift between these, we are left with 4 parameters for each contributing
mode to be determined. These are determined numerically by means of a opti-
mization procedure based on the least square principle. The optimization aims at

Risg-R-1181(EN) 63



ensuring the best possible agreement between the measured response signal and
the truncated modal expansion.

Results

An example of a decomposition, resulting from the optimization algorithm, is
shown in Figure 23, where a measured DOF-response has been resolved into the
7 lowest vibration modes. The underlying curve, with largest amplitudes, is the
measured signal. The measured signal is compared to the superposition of the
identified modal components in Figure 24. As seen, the derived modal expansion
approximate closely the measured signal.

=
a1

=

acceleration/(m/sh2) o

-0.5]

Figure 23. Decomposition of the measured signal (largest amplitude) into modal
components.

The modal shapes, natural frequencies and damping characteristics obtained,
using the above procedure, are approximately similar to the ones presented in
Chapter 4. This supports both results and furthermore indicates that the present
procedure is feasible.
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Figure 24. Comparison of superposition of identified components (approzimated)
and measured signal.

Evaluation of the technique

The advantages with this technique are its high degree of reproducibility with
respect to magnitude and direction of the ”forcing”. The disadvantages are the
amount of work necessary to replicate an experimen, the lack of a force obser-
vation and the resulting relative slow analysis method in the time domain. For
these reasons, it was decided not to proceed any further with this experimental
technique.

E.2 Shaker Excitation

Imposing the external excitation by means of a shaker results in analysis of a
system of forced blade oscillations.

Experimental procedure

A variety of forcing signals are possible — in the present situation only white
noise excitation have been investigated, as this excitation type in particular allows
for simultaneous analysis of the whole range of modal shapes. The experimental
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procedure is thus eased considerably compared e.g. to sinusoidal excitation.

Recording simultaneously the external forcing and the derived response, the
experimental analysis can be performed in the frequency domain based on the
transfer matrix (cf. Section 3.2). The analysis method is thus analogue to the one
applied for the transient excitation.

Different types of exciters exist — f.ex. exiters based on an electromagnetic prin-
ciple and hydraulic exiters. The exiter applied in the present experiments was
an electromagnetic vibration exciter of the type B&K (Briiel & Kjeer) 4808 (cf.
Appendix F). In principle the shaker works, and is controlled, similar to a loud-
speaker.

Due to the symmetry of the transfer matrix, expressing the dynamic relationship
between excitation (direction, magnitude) at a given location and the structural
response in one of the defined DOF’s, the experiment can be performed either
with fixed excitation location and roving response recording, corresponding to the
chosen discretization of the blade motion, or vice versa. Moving the exciter, and
in particular the attachment of the exciter, along the blade is, however, some-
what cumbersome. Therefore, the only practical way of performing this type of
experiments is to have the excitation fixed. The experimental setup employed is
illustrated in the pictures below.

Figure 25. Experimental setup using an electromagnetic exciter.
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Figure 26. Vertical and horizontal forcing applying an electromagnetic exciter.

Results

The results obtained from these experiments were very similar to the results ob-
tained from the experiments using transient excitation presented in Chapter 4.

Evaluation of the technique

One of the advantages with this type of forced excitation is the high degree of re-
producibility (level, frequency content) between individual experiments. Recording
a number of consecutive signal sequencies (typically of the order of 5), an aver-
aged transfer function estimate can be determined, thus reducing the inherent
noise contribution and improving the statistical significance of final results.

However, a problem was encountered with the available electromagnetic ex-
citer. For low frequencies the magnitude of the exitation force turned out to be
insufficient. The measurements showed low coherence below approximately 1.5
Hz, which is in particular a major disadvantage for large blades (the lower blade
modes, which are the most important ones, will have natural frequencies in this
range or even lower).

For this reason, it was decided not to proceed further with this technique. How-
ever, other types of exciter tables have characteristics that make them suitable
for exitation in the low frequency range below 1.5 Hz, and applying one of these
might turn the technique attractive also for wind turbine blade modal analysis.
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F Instrument specifications

The present appendix presents a summary of the hardware used and evaluated in
the experimental investigations performed. The make, product identification and
product specifications are given. For convenience, the hardware are categorized
into instrument classes depending on the function of the equipment.

Shaker and Controller:

device name description
shaker B&K 4808
power amplifier B&K 2712 frequency range: 0-100kHz (reduced power)

Force Transducer:

device name description
force transducer B&K 8201 force range: -4kN—16kN

Accelerometers:
device name description
DeltaTron B&K 4507 built-in amplifier; sensitivity: 10.0 mV/(m/s?);
nominal frequency range 1...5kHz.
DeltaTron B&K 4506 built-in amplifier; sensitivity: 10.0 mV/(m/s?);

nom. frequ. range 1...5kHz; triaxial.
Charge-UniGain  B&K 4370  sensitivity: 10.0 pC/(m/s?);

nominal frequency range 0.1...5kHz
Charge B&K 4501 sensitivity: 0.35 pC/(m/s?);

nominal frequency range 0.1...20kHz

Amplifiers:
device name description
charge condition amplifier B&K 2635 one channel; nominal frequency

range 1...5kHz
charge conditioning amplifier B&K 2692  four chanel;

equipped with dedicated high
pass filters (0.5 Hz, 1 Hz,
10 Hz) and low pass filters
(12.5 Hz, 25 Hz, 50 Hz)

Data Acquisition System:

device name description
data acquisition system B&K 3551 12 input chanels.
computer HP
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G FEM Model

The FE modeling of the blade is due to M.L. Thggersen and J.T. Petersen, Risg
[6]. The blade structure properties have been approached by neglecting the elastic-
ity (but not the weight) of the tip brake mechanism and by assuming the root part
to be fully clamped (and thus neglecting the moderate elasticity of the support
structure). Moreover, the material damping properties are not taken into account.

Basically, the blade model is a shell model. The surface geometry is defined by
connecting a number of predefined blade cross sections with radial splines. The
geometry of webs and other inner support structures is defined by subsequently
connecting suitable surface points with area elements. The defined surface area is
subsequently subdivided into 8-nodes triangular shell elements with quadratic in-
terpolation functions. The element is capable of modeling 100 layers of ortotropic
material properties, but only one layer, representing the average properties over
the shell thickness, was applied in the present modeling. Within a particular el-
ement the material properties are considered isotropic. The model has 4000 ele-
ments, 6000 nodes and 36000 DOF’s.
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