450 research outputs found
ZyFISH: A Simple, Rapid and Reliable Zygosity Assay for Transgenic Mice
Microinjection of DNA constructs into fertilized mouse oocytes typically results in random transgene integration at a single genomic locus. The resulting transgenic founders can be used to establish hemizygous transgenic mouse lines. However, practical and experimental reasons often require that such lines be bred to homozygosity. Transgene zygosity can be determined by progeny testing assays which are expensive and time-consuming, by quantitative Southern blotting which is labor-intensive, or by quantitative PCR (qPCR) which requires transgene-specific design. Here, we describe a zygosity assessment procedure based on fluorescent in situ hybridization (zyFISH). The zyFISH protocol entails the detection of transgenic loci by FISH and the concomitant assignment of homozygosity using a concise and unbiased scoring system. The method requires small volumes of blood, is scalable to at least 40 determinations per assay, and produces results entirely consistent with the progeny testing assay. This combination of reliability, simplicity and cost-effectiveness makes zyFISH a method of choice for transgenic mouse zygosity determinations
Pulmonary intravascular lymphoma diagnosed by 18-fluorodeoxyglucose positron emission tomography-guided transbronchial lung biopsy in a man with long-term survival: a case report
<p>Abstract</p> <p>Introduction</p> <p>18-Fluorodeoxyglucose positron emission tomography can detect the pulmonary involvement of intravascular lymphoma that presents no abnormality in a computed tomography scan.</p> <p>Case presentation</p> <p>We report the case of a 61-year-old Japanese man who had pulmonary intravascular lymphoma and no computed tomography abnormality. We were able to make an antemortem diagnosis of pulmonary intravascular lymphoma by transbronchial lung biopsy according to 18-fluorodeoxyglucose positron emission tomography findings. He is free of recurrent disease 24 months after chemotherapy.</p> <p>Conclusions</p> <p>To the best of our knowledge, this is the first reported case of a long-term survivor of pulmonary intravascular lymphoma diagnosed by transbronchial lung biopsy under the guide of 18-fluorodeoxyglucose positron emission tomography.</p
Re-examination of siRNA specificity questions role of PICH and Tao1 in the spindle checkpoint and identifies Mad2 as a sensitive target for small RNAs
The DNA-dependent adenosine triphosphatase (ATPase) Plk1-interacting checkpoint helicase (PICH) has recently been implicated in spindle checkpoint (SAC) signaling (Baumann et al., Cell 128(1):101–114, 2007). Depletion of PICH by siRNA abolished the SAC and resulted in an apparently selective loss of Mad2 from kinetochores, suggesting a role for PICH in the regulation of the Mad1–Mad2 interaction. An apparent rescue of SAC functionality by overexpression of PICH in PICH-depleted cells initially seemed to confirm a role for PICH in the SAC. However, we have subsequently discovered that all PICH-directed siRNA oligonucleotides that abolish the SAC also reduce Mad2 mRNA and protein expression. This reduction is functionally significant, as PICH siRNA does not abolish SAC activity in a cell line that harbors a bacterial artificial chromosome driving the expression of murine Mad2. Moreover, we identified several siRNA duplexes that effectively deplete PICH but do not significantly affect SAC functionality or Mad2 abundance or localization. Finally, we discovered that the ability of overexpressed PICH to restore SAC activity in PICH-depleted cells depends on sequestration of the mitotic kinase Plk1 rather than ATPase activity of PICH, pointing to an underlying mechanism of “bypass suppression.” In support of this view, depletion or inhibition of Plk1 also rescued SAC activity in cells harboring low levels of Mad2. This observation suggests that a reduction of Plk1 activity partially compensates for reduced Mad2 levels and argues that Plk1 normally reduces the strength of SAC signaling. Collectively, our results question the role of PICH in the SAC and instead identify Mad2 as a sensitive off target for small RNA duplexes. In support of the latter conclusion, our evidence suggests that an off-target effect on Mad2 may also contribute to explain the apparent role of the Tao1 kinase in SAC signaling (Draviam et al., Nat Cell Biol 9(5):556–564, 2007)
Chromatin organization revealed by nanostructure of irradiation induced gamma H2AX, 53BP1 and Rad51 foci
The spatial distribution of DSB repair factors gamma H2AX, 53BP1 and Rad51 in ionizing radiation induced foci (IRIF) in HeLa cells using super resolution STED nanoscopy after low and high linear energy transfer (LET) irradiation was investigated. 53BP1 and gamma H2AX form IRIF with same mean size of (540 +/- 40) nm after high LET irradiation while the size after low LET irradiation is significantly smaller. The IRIF of both repair factors show nanostructures with partial anti-correlation. These structures are related to domains formed within the chromatin territories marked by gamma H2AX while 53BP1 is mainly situated in the perichromatin region. The nanostructures have a mean size of (129 +/- 6) nm and are found to be irrespective of the applied LET and the labelled damage marker. In contrast, Rad51 shows no nanostructure and a mean size of (143 +/- 13) nm independent of LET. Although Rad51 is surrounded by 53BP1 it strongly anti-correlates meaning an exclusion of 53BP1 next to DSB when decision for homologous DSB repair happened
Adaptive real-time dual-comb spectroscopy
With the advent of laser frequency combs, coherent light sources that offer
equally-spaced sharp lines over a broad spectral bandwidth have become
available. One decade after revolutionizing optical frequency metrology,
frequency combs hold much promise for significant advances in a growing number
of applications including molecular spectroscopy. Despite its intriguing
potential for the measurement of molecular spectra spanning tens of nanometers
within tens of microseconds at Doppler-limited resolution, the development of
dual-comb spectroscopy is hindered by the extremely demanding high-bandwidth
servo-control conditions of the laser combs. Here we overcome this difficulty.
We experimentally demonstrate a straightforward concept of real-time dual-comb
spectroscopy, which only uses free-running mode-locked lasers without any
phase-lock electronics, a posteriori data-processing, or the need for expertise
in frequency metrology. The resulting simplicity and versatility of our new
technique of adaptive dual-comb spectroscopy offer a powerful transdisciplinary
instrument that may spark off new discoveries in molecular sciences.Comment: 10 pages, 5 figure
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings
RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks
Rationale and study design of the prospective, longitudinal, observational cohort study “rISk strAtification in end-stage renal disease” (ISAR) study
Background: The ISAR study is a prospective, longitudinal, observational cohort study to improve the cardiovascular risk stratification in endstage renal disease (ESRD). The major goal is to characterize the cardiovascular phenotype of the study subjects, namely alterations in micro-and macrocirculation and to determine autonomic function. Methods/design: We intend to recruit 500 prevalent dialysis patients in 17 centers in Munich and the surrounding area. Baseline examinations include: (1) biochemistry, (2) 24-h Holter Electrocardiography (ECG) recordings, (3) 24-h ambulatory blood pressure measurement (ABPM), (4) 24 h pulse wave analysis (PWA) and pulse wave velocity (PWV), (5) retinal vessel analysis (RVA) and (6) neurocognitive testing. After 24 months biochemistry and determination of single PWA, single PWV and neurocognitive testing are repeated. Patients will be followed up to 6 years for (1) hospitalizations, (2) cardiovascular and (3) non-cardiovascular events and (4) cardiovascular and (5) all-cause mortality. Discussion/conclusion: We aim to create a complex dataset to answer questions about the insufficiently understood pathophysiology leading to excessively high cardiovascular and non-cardiovascular mortality in dialysis patients. Finally we hope to improve cardiovascular risk stratification in comparison to the use of classical and non-classical (dialysis-associated) risk factors and other models of risk stratification in ESRD patients by building a multivariable Cox-Regression model using a combination of the parameters measured in the study
A Subset of Replication Proteins Enhances Origin Recognition and Lytic Replication by the Epstein-Barr Virus ZEBRA Protein
ZEBRA is a site-specific DNA binding protein that functions as a transcriptional activator and as an origin binding protein. Both activities require that ZEBRA recognizes DNA motifs that are scattered along the viral genome. The mechanism by which ZEBRA discriminates between the origin of lytic replication and promoters of EBV early genes is not well understood. We explored the hypothesis that activation of replication requires stronger association between ZEBRA and DNA than does transcription. A ZEBRA mutant, Z(S173A), at a phosphorylation site and three point mutants in the DNA recognition domain of ZEBRA, namely Z(Y180E), Z(R187K) and Z(K188A), were similarly deficient at activating lytic DNA replication and expression of late gene expression but were competent to activate transcription of viral early lytic genes. These mutants all exhibited reduced capacity to interact with DNA as assessed by EMSA, ChIP and an in vivo biotinylated DNA pull-down assay. Over-expression of three virally encoded replication proteins, namely the primase (BSLF1), the single-stranded DNA-binding protein (BALF2) and the DNA polymerase processivity factor (BMRF1), partially rescued the replication defect in these mutants and enhanced ZEBRA's interaction with oriLyt. The findings demonstrate a functional role of replication proteins in stabilizing the association of ZEBRA with viral DNA. Enhanced binding of ZEBRA to oriLyt is crucial for lytic viral DNA replication
- …