128 research outputs found

    Samfunnsvernets betydning – ved fare for andres liv eller helse

    Get PDF
    Denne masteroppgaven er en kritisk analyse av vedtakshjemmelen for tvungent psykisk helsevern, med hovedvekt pÄ farekriteriet som unntak fra samtykkekriteriet i phvl. § 3-3 nr. 4. Hensikten er Ä foreta en dyptgÄende analyse av forholdet mellom lovverkets innhold og lovgivningsidealet om rettsstatens idé. Oppgavens overordnede problemstilling er i hvilken grad phvl. § 3-3 nr. 4 er egnet til Ä ivareta samfunnsvernet og pasientenes rettssikkerhet.MasteroppgaveJUS399MAJUR-2MAJU

    Offset Calculation for Registration-Free EM-based Liver Navigation

    Get PDF
    Precise placement of ablation needles for the treatment of liver tumors remains difficult due to poor visibility of potential tumor targets in ultrasound imaging. Various groups have carried out extensive efforts to develop image-guidance and surgical navigation technology for the realm of oncologic liver surgery. Due to additional complexity and disruption in the clinical workflow, the barriers to introducing these systems on a larger clinical level remains high. In this work we present an initial evaluation towards a novel and simple method for accurate image-guided targeting of liver tumors based on EM-tracking and with-out requiring patient-to-image registration. The initial feasibility of the 3D offset calculation from fluoroscopy images is demonstrated

    Early Recoil After Balloon Angioplasty of Erection-Related Arteries in Patients With Arteriogenic Erectile Dysfunction

    Full text link
    PURPOSE To evaluate the incidence of elastic recoil in patients presenting with erectile dysfunction (ED) undergoing endovascular revascularization of the pudendal or penile arteries. METHODS A consecutive series of 21 ED patients (mean age 58.3±9.3 years) undergoing minimally invasive revascularization of 31 arteries was analyzed. ED lesions included the pudendal arteries (n=27) and the penile artery (n=4). Mean lesion length was 20.6±13.9 mm. Minimal lumen diameter (MLD) measurements were assessed at baseline, immediately after balloon angioplasty, and 10 minutes thereafter. Early recoil was defined as an MLD reduction >10%. Elastic recoil with >10% lumen compromise was treated with drug-coated balloons, while severe elastic recoil (>30%) required drug-eluting stents (DES). The International Index of Erectile Function (IIEF-15) score was obtained prior to and 3 months after the procedure to obtain information on functional outcomes subsequent to angioplasty. RESULTS Mean MLD at baseline was 0.9±0.6 mm, which improved to 2.0±0.9 mm immediately after balloon dilation. At 10 minutes after dilation, the MLD was 1.7±1.0 mm. Elastic recoil was observed in all 31 lesions and resulted in a mean lumen compromise of 21.2%. Severe (>30%) recoil was observed in 14 arteries, which underwent DES therapy. The IIEF-15 score improved from 31.3±11.2 at baseline to 49.8±16.8 (p<0.001) at the 3-month follow-up. CONCLUSION Endovascular revascularization constitutes a safe and feasible treatment modality to restore erectile function in patients with arteriogenic ED and ineffective conservative management. Early elastic recoil is very frequent subsequent to balloon dilation of small-caliber erection-related arteries. Thus, mechanical scaffolding with DES is required in a high subset of ED patients to provide favorable early angiographic and clinical results

    App-based support for breast cancer patients to reduce psychological distress during therapy and survivorship – a multicentric randomized controlled trial

    Get PDF
    IntroductionThe negative impact of unmanaged psychological distress on quality of life and outcome in breast cancer survivors has been demonstrated. Fortunately, studies indicate that distress can effectively be addressed and even prevented using evidence-based interventions. In Germany prescription-based mobile health apps, known as DiGAs (digital health applications), that are fully reimbursed by health insurances, were introduced in 2020. In this study, the effectiveness of an approved breast cancer DiGA was investigated: The personalized coaching app PINK! Coach supports and accompanies breast cancer patients during therapy and follow-up.MethodsPINK! Coach was specifically designed for breast cancer (BC) patients from the day of diagnosis to the time of Follow-up (aftercare). The app offers individualized, evidence-based therapy and side-effect management, mindfulness-based stress reduction, nutritional and psychological education, physical activity tracking, and motivational exercises to implement lifestyle changes sustainably in daily routine. A prospective, intraindividual RCT (DRKS00028699) was performed with n = 434 patients recruited in 7 German breast cancer centers from September 2022 until January 2023. Patients with BC were included independent of their stage of diseases, type of therapy and molecular characteristics of the tumor. Patients were randomized into one of two groups: The intervention group got access to PINK! over 12 weeks; the control group served as a waiting-list comparison to “standard of care.” The primary endpoint was psychological distress objectified by means of Patient Health Questionnaire-9 (PHQ-9). Subgroups were defined to investigate the app’s effect on several patient groups such as MBC vs. EBC patients, patients on therapy vs. in aftercare, patients who received a chemotherapy vs. patients who did not.ResultsEfficacy analysis of the primary endpoint revealed a significant reduction in psychological distress (least squares estimate -1.62, 95% confidence interval [1.03; 2.21]; p&lt;0.001) among intervention group patients from baseline to T3 vs, control group. Subgroup analysis also suggested improvements across all clinical situations.ConclusionPatients with breast cancer suffer from psychological problems including anxiety and depression during and after therapy. Personalized, supportive care with the app PINK! Coach turned out as a promising opportunity to significantly improve psychological distress in a convenient, accessible, and low-threshold manner for breast cancer patients independent of their stage of disease (EBC/MBC), therapy phase (aftercare or therapy) or therapy itself (chemotherapy/other therapy options). The app is routinely available in Germany as a DiGA. Clinical Trial Registration: DRKS Trial Registry (DRKS00028699)

    Positive and Negative Parenting in Conduct Disorder with High versus Low Levels of Callous-Unemotional Traits

    Get PDF
    Less is known about the relationship between conduct disorder (CD), callous-unemotional (CU) traits, and positive and negative parenting in youth compared to early childhood. We combined traditional univariate analyses with a novel machine learning classifier (Angle-based Generalized Matrix Learning Vector Quantization) to classify youth (N = 756; 9-18 years) into typically developing (TD) or CD groups with or without elevated CU traits (CD/HCU, CD/LCU, respectively) using youth- A nd parent-reports of parenting behavior. At the group level, both CD/HCU and CD/LCU were associated with high negative and low positive parenting relative to TD. However, only positive parenting differed between the CD/HCU and CD/LCU groups. In classification analyses, performance was best when distinguishing CD/HCU from TD groups and poorest when distinguishing CD/HCU from CD/LCU groups. Positive and negative parenting were both relevant when distinguishing CD/HCU from TD, negative parenting was most relevant when distinguishing between CD/LCU and TD, and positive parenting was most relevant when distinguishing CD/HCU from CD/LCU groups. These findings suggest that while positive parenting distinguishes between CD/HCU and CD/LCU, negative parenting is associated with both CD subtypes. These results highlight the importance of considering multiple parenting behaviors in CD with varying levels of CU traits in late childhood/adolescence

    Long-term and real-world safety and efficacy of retroviral gene therapy for adenosine deaminase deficiency

    Get PDF
    Adenosine deaminase (ADA) deficiency leads to severe combined immunodeficiency (SCID). Previous clinical trials showed that autologous CD34+ cell gene therapy (GT) following busulfan reduced-intensity conditioning is a promising therapeutic approach for ADA-SCID, but long-term data are warranted. Here we report an analysis on long-term safety and efficacy data of 43 patients with ADA-SCID who received retroviral ex vivo bone marrow-derived hematopoietic stem cell GT. Twenty-two individuals (median follow-up 15.4 years) were treated in the context of clinical development or named patient program. Nineteen patients were treated post-marketing authorization (median follow-up 3.2 years), and two additional patients received mobilized peripheral blood CD34+ cell GT. At data cutoff, all 43 patients were alive, with a median follow-up of 5.0 years (interquartile range 2.4-15.4) and 2 years intervention-free survival (no need for long-term enzyme replacement therapy or allogeneic hematopoietic stem cell transplantation) of 88% (95% confidence interval 78.7-98.4%). Most adverse events/reactions were related to disease background, busulfan conditioning or immune reconstitution; the safety profile of the real world experience was in line with premarketing cohort. One patient from the named patient program developed a T cell leukemia related to treatment 4.7 years after GT and is currently in remission. Long-term persistence of multilineage gene-corrected cells, metabolic detoxification, immune reconstitution and decreased infection rates were observed. Estimated mixed-effects models showed that higher dose of CD34+ cells infused and younger age at GT affected positively the plateau of CD3+ transduced cells, lymphocytes and CD4+ CD45RA+ naive T cells, whereas the cell dose positively influenced the final plateau of CD15+ transduced cells. These long-term data suggest that the risk-benefit of GT in ADA remains favorable and warrant for continuing long-term safety monitoring. Clinical trial registration: NCT00598481 , NCT034786

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP\delta_{CP}. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter.Comment: Contribution to Snowmass 202
    • 

    corecore