362 research outputs found

    Brane Bremsstrahlung in DBI Inflation

    Full text link
    We consider the effect of trapped branes on the evolution of a test brane whose motion generates DBI inflation along a warped throat. The coupling between the inflationary brane and a trapped brane leads to the radiation of non-thermal particles on the trapped brane. We calculate the Gaussian spectrum of the radiated particles and their backreaction on the DBI motion of the inflationary brane. Radiation occurs for momenta lower than the speed of the test brane when crossing the trapped brane. The slowing down effect is either due to a parametric resonance when the interaction time is small compared to the Hubble time or a tachyonic resonance when the interaction time is large. In both cases the motion of the inflationary brane after the interaction is governed by a chameleonic potential,which tends to slow it down. We find that a single trapped brane can hardly slow down a DBI inflaton whose fluctuations lead to the Cosmic Microwave Background spectrum. A more drastic effect is obtained when the DBI brane encounters a tightly spaced stack of trapped branes.Comment: 20 pages, 1 figur

    Remoteness does not enhance coral reef resilience

    Get PDF
    Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes

    Coral Symbiodinium Community Composition Across the Belize Mesoamerican Barrier Reef System is Influenced by Host Species and Thermal Variability

    Get PDF
    Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium, and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral’s ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (highTP, modTP, and lowTP) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. S. siderea was associated with distinct Symbiodinium communities; however, Symbiodinium communities of its congener, S. radians and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these environmental variables may vary by coral host species

    Microfiber abundance associated with coral tissue varies geographically on the Belize Mesoamerican Barrier Reef System

    Get PDF
    Ocean plastic pollution is a global problem that causes ecosystem degradation. Crucial knowledge gaps exist concerning patterns in microfiber abundance across regions and ecosystems, as well as the role of these pollutants within the environment. Here, we quantified the abundance of microfibers in coral samples collected from the Belize Mesoamerican Barrier Reef System (MBRS) using a polarized light microscope and identified a subsample of these to the polymer level using an Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy microscope. Microfibers were found in all coral samples with rayon being identified as the most common microfiber, comprising 85% of quantified pollutants. We found a greater average abundance of microfibers in coral samples from the Sapodilla Cayes (296 ± SE 89) than in samples from the Drowned Cayes (75 ± SE 14), indicating spatial variation in microfiber abundance within coral tissue along the MBRS. These results demonstrate that corals on the Belize MBRS interact with microfibers and that microfiber abundance on reefs varies spatially due to point sources of pollution and local oceanography. As rayon from clothing typically enters the ocean through wastewater effluent, alterations to waste water infrastructure may prove useful in decreasing rayon pollution in coastal waters

    Perturbation Theory in k-Inflation Coupled to Matter

    Full text link
    We consider k-inflation models where the action is a non-linear function of both the inflaton and the inflaton kinetic term. We focus on a scalar-tensor extension of k-inflation coupled to matter for which we derive a modified Mukhanov-Sasaki equation for the curvature perturbation. Significant corrections to the power spectrum appear when the coupling function changes abruptly along the inflationary trajectory. This gives rise to a modification of Starobinsky's model of perturbation features. We analyse the way the power spectrum is altered in the infrared when such features are present.Comment: 20 pages, 1 figur

    Two offshore coral species show greater acclimatization capacity to environmental variation than nearshore counterparts in southern Belize

    Get PDF
    Coral reefs are enduring decline due to the intensifying impacts of anthropogenic global change. This widespread decline has resulted in increased efforts to identify resilient coral populations and develop novel restoration strategies. Paramount in these efforts is the need to understand how environmental variation and thermal history affect coral physiology and resilience. Here, we assess the acclimatization capacity of Siderastrea siderea and Pseudodiploria strigosa corals via a 17-month reciprocal transplant experiment between nearshore and offshore reefs on the Belize Mesoamerican Barrier Reef System. These nearshore reefs are more turbid, eutrophic, warm, and thermally variable than offshore reefs. All corals exhibited some evidence of acclimatization after transplantation. Corals transplanted from nearshore to offshore calcified slower than in their native habitat, especially S. siderea corals which exhibited 60% mortality and little to no net growth over the duration of the 17-month study. Corals transplanted from offshore to nearshore calcified faster than in their native habitat with 96% survival. Higher host tissue δ15N in nearshore corals indicated that increased heterotrophic opportunity or nitrogen sources between nearshore and offshore reefs likely promoted elevated calcification rates nearshore and may facilitate adaptation in nearshore populations to such conditions over time. These results demonstrate that offshore populations of S. siderea and P. strigosa possess the acclimatization capacity to survive in warmer and more turbid nearshore conditions, but that local adaptation to native nearshore conditions may hinder the plasticity of nearshore populations, thereby limiting their utility in coral restoration activities outside of their native habitat in the short term

    Unitary Positive-Energy Representations of Scalar Bilocal Quantum Fields

    Full text link
    The superselection sectors of two classes of scalar bilocal quantum fields in D>=4 dimensions are explicitly determined by working out the constraints imposed by unitarity. The resulting classification in terms of the dual of the respective gauge groups U(N) and O(N) confirms the expectations based on general results obtained in the framework of local nets in algebraic quantum field theory, but the approach using standard Lie algebra methods rather than abstract duality theory is complementary. The result indicates that one does not lose interesting models if one postulates the absence of scalar fields of dimension D-2 in models with global conformal invariance. Another remarkable outcome is the observation that, with an appropriate choice of the Hamiltonian, a Lie algebra embedded into the associative algebra of observables completely fixes the representation theory.Comment: 27 pages, v3: result improved by eliminating redundant assumptio

    Nearshore coral growth declining on the Mesoamerican Barrier Reef System

    Get PDF
    Anthropogenic global change and local stressors are impacting coral growth and survival worldwide, altering the structure and function of coral reef ecosystems. Here, we show that skeletal extension rates of nearshore colonies of two abundant and widespread Caribbean corals (Siderastrea siderea, Pseudodiploria strigosa) declined across the Belize Mesoamerican Barrier Reef System (MBRS) over the past century, while offshore coral conspecifics exhibited relatively stable extension rates over the same temporal interval. This decline has caused nearshore coral extension rates to converge with those of their historically slower growing offshore coral counterparts. For both species, individual mass coral bleaching events were correlated with low rates of skeletal extension within specific reef environments, but no single bleaching event was correlated with low skeletal extension rates across all reef environments. We postulate that the decline in skeletal extension rates for nearshore corals is driven primarily by the combined effects of long-term ocean warming and increasing exposure to higher levels of land-based anthropogenic stressors, with acute thermally induced bleaching events playing a lesser role. If these declining trends in skeletal growth of nearshore S. siderea and P. strigosa continue into the future, the structure and function of these critical nearshore MBRS coral reef systems is likely to be severely impaired

    Corals sustain growth but not skeletal density across the Florida Keys Reef Tract despite ongoing warming

    Get PDF
    Through the continuous growth of their carbonate skeletons, corals record information about past environmental conditions and their effect on colony fitness. Here, we characterize century-scale growth records of inner and outer reef corals across ~200 km of the Florida Keys Reef Tract (FKRT) using skeletal cores extracted from two ubiquitous reef-building species, Siderastrea siderea and Pseudodiploria strigosa. We find that corals across the FKRT have sustained extension and calcification rates over the past century but have experienced a long-term reduction in skeletal density, regardless of reef zone. Notably, P. strigosa colonies exhibit temporary reef zone-dependent reductions in extension rate corresponding to two known extreme temperature events in 1969–1970 and 1997–1998. We propose that the subtropical climate of the FKRT may buffer corals from chronic growth declines associated with climate warming, though the significant reduction in skeletal density may indicate underlying vulnerability to present and future trends in ocean acidification

    Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients.

    Get PDF
    Schizophrenia pathophysiology implies both abnormal redox control and dysconnectivity of the prefrontal cortex, partly related to oligodendrocyte and myelin impairments. As oligodendrocytes are highly vulnerable to altered redox state, we investigated the interplay between glutathione and myelin. In control subjects, multimodal brain imaging revealed a positive association between medial prefrontal glutathione levels and both white matter integrity and resting-state functional connectivity along the cingulum bundle. In early psychosis patients, only white matter integrity was correlated with glutathione levels. On the other side, in the prefrontal cortex of peripubertal mice with genetically impaired glutathione synthesis, mature oligodendrocyte numbers, as well as myelin markers, were decreased. At the molecular levels, under glutathione-deficit conditions induced by short hairpin RNA targeting the key glutathione synthesis enzyme, oligodendrocyte progenitors showed a decreased proliferation mediated by an upregulation of Fyn kinase activity, reversed by either the antioxidant N-acetylcysteine or Fyn kinase inhibitors. In addition, oligodendrocyte maturation was impaired. Interestingly, the regulation of Fyn mRNA and protein expression was also impaired in fibroblasts of patients deficient in glutathione synthesis. Thus, glutathione and redox regulation have a critical role in myelination processes and white matter maturation in the prefrontal cortex of rodent and human, a mechanism potentially disrupted in schizophrenia
    corecore