8,129 research outputs found

    A study of cloud motions on Mars, part B Final report

    Get PDF
    Photographic plates used to map cloud motions on Mar

    Post-mission Viking data anaysis

    Get PDF
    Three Mars data analysis projects from the Viking Mars program were identified initially, and three more came into being as the work proceeded. All together, these six pertained to: (1) the veritical distribution of scattering particles in the Martian atmosphere at various locations in various seasons, (2) the physical parameters that define photometric properties of the Martian surface and atmosphere, (3) patterns of dust-cloud and global dust-storm development, (4) a direct comparison of near-simultaneous Viking and ground-based observations, (5) the annual formation and dissipation of polar frost caps, and (6) evidence concerning possible present-day volcanism or venting. A list of publications pertaining to the appropriate projects is included

    Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach

    Full text link
    Distributed models to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides are based on deterministic laws. These models extend spatially the static stability models adopted in geotechnical engineering, and adopt an infinite-slope geometry to balance the resisting and the driving forces acting on the sliding mass. An infiltration model is used to determine how rainfall changes pore-water conditions, modulating the local stability/instability conditions. A problem with the operation of the existing models lays in the difficulty in obtaining accurate values for the several variables that describe the material properties of the slopes. The problem is particularly severe when the models are applied over large areas, for which sufficient information on the geotechnical and hydrological conditions of the slopes is not generally available. To help solve the problem, we propose a probabilistic Monte Carlo approach to the distributed modeling of rainfall-induced shallow landslides. For the purpose, we have modified the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) code. The new code (TRIGRS-P) adopts a probabilistic approach to compute, on a cell-by-cell basis, transient pore-pressure changes and related changes in the factor of safety due to rainfall infiltration. Infiltration is modeled using analytical solutions of partial differential equations describing one-dimensional vertical flow in isotropic, homogeneous materials. Both saturated and unsaturated soil conditions can be considered. TRIGRS-P copes with the natural variability inherent to the mechanical and hydrological properties of the slope materials by allowing values of the TRIGRS model input parameters to be sampled randomly from a given probability distribution. [..]Comment: 25 pages, 14 figures, 9 tables. Revised version; accepted for publication in Geoscientific Model Development on 13 February 201

    Development of fuel cell electrodes, Electrode improvement and life testing, tasks 1 and 3 Final report, 30 Jun. 1966 - 30 Apr. 1968

    Get PDF
    Volt-ampere characteristics improvement and life testing of electrodes for hydrogen oxygen fuel cell

    Handwritten digit recognition by bio-inspired hierarchical networks

    Full text link
    The human brain processes information showing learning and prediction abilities but the underlying neuronal mechanisms still remain unknown. Recently, many studies prove that neuronal networks are able of both generalizations and associations of sensory inputs. In this paper, following a set of neurophysiological evidences, we propose a learning framework with a strong biological plausibility that mimics prominent functions of cortical circuitries. We developed the Inductive Conceptual Network (ICN), that is a hierarchical bio-inspired network, able to learn invariant patterns by Variable-order Markov Models implemented in its nodes. The outputs of the top-most node of ICN hierarchy, representing the highest input generalization, allow for automatic classification of inputs. We found that the ICN clusterized MNIST images with an error of 5.73% and USPS images with an error of 12.56%

    Spectral Templates from Multicolor Redshift Surveys

    Get PDF
    Understanding how the physical properties of galaxies (e.g. their spectral type or age) evolve as a function of redshift relies on having an accurate representation of galaxy spectral energy distributions. While it has been known for some time that galaxy spectra can be reconstructed from a handful of orthogonal basis templates, the underlying basis is poorly constrained. The limiting factor has been the lack of large samples of galaxies (covering a wide range in spectral type) with high signal-to-noise spectrophotometric observations. To alleviate this problem we introduce here a new technique for reconstructing galaxy spectral energy distributions directly from samples of galaxies with broadband photometric data and spectroscopic redshifts. Exploiting the statistical approach of the Karhunen-Loeve expansion, our iterative training procedure increasingly improves the eigenbasis, so that it provides better agreement with the photometry. We demonstrate the utility of this approach by applying these improved spectral energy distributions to the estimation of photometric redshifts for the HDF sample of galaxies. We find that in a small number of iterations the dispersion in the photometric redshifts estimator (a comparison between predicted and measured redshifts) can decrease by up to a factor of 2.Comment: 25 pages, 9 figures, LaTeX AASTeX, accepted for publication in A

    WFPC2 LRF Imaging of Emission Line Nebulae in 3CR Radio Galaxies

    Get PDF
    We present HST/WFPC2 Linear Ramp Filter images of high surface brightness emission lines (either [OII], [OIII], or H-alpha+[NII]) in 80 3CR radio sources. We overlay the emission line images on high resolution VLA radio images (eight of which are new reductions of archival data) in order to examine the spatial relationship between the optical and radio emission. We confirm that the radio and optical emission line structures are consistent with weak alignment at low redshift (z < 0.6) except in the Compact Steep Spectrum (CSS) radio galaxies where both the radio source and the emission line nebulae are on galactic scales and strong alignment is seen at all redshifts. There are weak trends for the aligned emission line nebulae to be more luminous, and for the emission line nebula size to increase with redshift and/or radio power. The combination of these results suggests that there is a limited but real capacity for the radio source to influence the properties of the emission line nebulae at these low redshifts (z < 0.6). Our results are consistent with previous suggestions that both mechanical and radiant energy are responsible for generating alignment between the radio source and emission line gas.Comment: 80 pages, 54 figures. Accepted for publication in ApJ

    Constraints on UV Absorption in the Intracluster Medium of Abell 1030

    Get PDF
    We present results from an extensive HST spectroscopic search for UV absorption lines in the spectrum of the quasar B2~1028+313, which is associated with the central dominant galaxy in the cluster Abell~1030 (z=0.178z=0.178). This is one of the brightest known UV continuum sources located in a cluster, and therefore provides an ideal opportunity to obtain stringent constraints on the column densities of any cool absorbing gas that may be associated with the intracluster medium (ICM). Our HST spectra were obtained with the FOS and GHRS, and provide continuous coverage at rest-frame wavelengths from 975\sim 975 to 4060~\AA, thereby allowing the investigation of many different elements and ionization levels. We utilize a new technique that involves simultaneous fitting of large numbers of different transitions for each species, thereby yielding more robust constraints on column densities than can be obtained from a single transition. This method yields upper limits of 10111013\lesssim 10^{11} - 10^{13} cm2^{-2} on the column densities of a wide range of molecular, atomic and ionized species that may be associated with the ICM. We also discuss a possible \Lya and C IV absorption system associated with the quasar. We discuss the implications of the upper limits on cool intracluster gas in the context of the physical properties of the ICM and its relationship to the quasar.Comment: Astrophysical Journal, in press, 19 pages, includes 5 PostScript figures. Latex format, uses aas2pp4.sty and epsfig.sty file
    corecore