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NATURAL FREQUENCIES AND MODES OF GASES IN MULTI-CYLINDER COMPRESSOR MANIFOLDS AND THEIR USE IN DESIGN 

Soedel, W. and Baum, J.M. 
Ray W. Herrick Laboratories 

Purdue University 
west Lafayette, Indiana 47907 

INTRODUCTION 

In the following a case study of a four 
cylinder compressor is presented where parti­
cular attention is paid to the role that 
natural frequencies and modes play in the 
gas oscillations inside the compressor mani­
fold. 

The first part of the paper discusses the 
equation of motion of the gas that sloshes 
around in the manifold and concentrates then 
on the theoretical prediction of the natural 
frequencies and modes of the gas in the mani­
fold. Typical results are shown. 

The second part of the paper illustrates how 
knowledge of natural frequencies and modes 
can be used to predict (or explain) the 
occurence of large amplitude oscillations 
under certain conditions. 

EQUATION OF MOTION 

The equations of motion are derived using 
the Helmholtz resonator approach. This ap­
proach was presented in references [1,2] 
and will not be discussed here. 

The example case is a four cylinder com­
pressor with an eight degree of freedom dis­
charge system in the vibration sense, not 
counting the discharge line which is taken 
as anechoic [3]. Referring to Figure 1, 
the elements labeled lL, lR, 2L, ••. , etc. 
are considered the mass elements. Cavities 
11, 12, 21, 22 •.. ,etc. represent the 
interconnecting springs between "plug" mass­
es. The displacements of the plug masses 
are represented by the symbols ~IJ whe~e 
the subscript J denotes that the plug ~s 
either to the right or to the left of the 
discharge cavity directly above the Ith 
cylinder. The acoustic displacement of a 
given plug is taken to be positive in the 
clockwise direction. This sign convention 
is used when the free body diagram and the 
equation of motion for a plug are written. 
The displacement of the gas at the entrance 
to the discharge pipe is ~ . This p 
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displacement is not analogous to the dis­
placement of a "plug" mass because of the 
character of the anechoic termination as­
sumed for the pipe where no sound waves 
are reflected back into the discharge cavity. 
It can be visualized as some function of 
the distance down the pipe from the entrance 
at any instant of time. 

With this as background, we may proceed to 
derive the equations of motion for the sys­
tem. They can be represented compactly by 
the matrix equation 

.. .. 
[M] {0 + [C] {0 + [K] {0 {SLip} (1) 

where 

[M] mass matrix 
[C] = damping matrix 
[K] stiffness matrix 

~ "' plug displacement coordinate 
SLip = force acting on plug 

The damping matrix will be diagonal, includ­
ing not only the anechoic termination effect, 
but also factors accounting for the energy 
loss due to friction. While in general the 
damping effect is very complex, a function 
of frequency of oscillation, fluid properties 
and geometric considerations, it is modeled 
for this compressor as an appropriate damp­
ing factor, after the fashion of single 
degree-of-freedom vibration problems. Thus, 
damping terms are of the form 

(2) 

The mass matrix is diagonal except for the 
last row which represents the equation for 
the discharge pipe. Length terms LlL' LlR' 
L2 , ••• etc. do not represent phys~cal le~gths of the orifices between the cavities 
but are corrected lengths. Oscillatory 
fluid motion in the neck region was re­
presented by a mass due to the dominance 



of the inertial over the compressible pro­
perties. Since the area of relatively high 
particle velocity extends beyond just the 
physical confines of the neck, an effective 
length for these masses must be determined. 
The effective length for a Helmholtz re­
sonator neck is usually formulated as the 
geometric length plus an "end correction" 
to include the co-vibrating mass. Rayleigh 
[4] gives the end correction, ~L for one 
end of a cylindrical plug, of length L and 
radius a, to be between the limits 

0.79a < ~L < 0.85a (3) 

For a hole in a thin wall, the lower limit 
is more correct while as the relative length 
of the plug increases, so does the end cor­
rection. For noncircular cross sections, 
it is suggested that the radius of a circle 
having the same cross-sectional area be used 
to fi~d the end correction. Thus, for neck 
regions in the compressor cavity system, the 
effective length of plug lL, for example is 

L t ' 1 th k lL + 2(0 82,/SlL) lL ~ geome r~c eng nee • ~ n 

(4) 

The force vector has terms of the form S~p, 
the area times the difference in pressure 
between the cavities located at either side 
of the plug. Now, the cavities located far 
from the discharge pipe have higher mean 
thermodynamic pressures, over a cycle, than 
the ones nearer to the outlet so that mass 
moves toward and out the pipe. Thus, the 
pressure differential across any neck will 
not necessarily have an average value of 
zero over a cycle of the compressor but 
will be biased in the direction of mean 
mass flow. Since this bias appears in the 
equations of motion of the plugs as a con­
stant force, the solution would yield ever 
increasing mean acoustic displacements. 
These displacements could give an acoustic 
pressure with a mean value. Since, the 
acoustic pressure was defined as a pertur­
bation on mean pressure in the cavities 
which is described by the thermodynamic 
relationships,the proper force vector will 
be S~Pavg where the differential ~Pavg has 
an average value of zero over one compressor 
crank rotation. 

Instead of using the displacements of the 
plug masses as the generalized coordinate, 
volume displacement, the cross-sectional 
area of the plug times its displacement, 
could be used. The solution of the equations 
for the volume displacement is more descrip­
tive. It is the cavity volume change due 
to the plug oscillation which when multipli­
ed by the spring constant for the cavity 
gives the change in cavity acoustic pressure 
due to the plug oscillation. Equation (1) 
could be rewritten as 

(M] {S~} + [C] {s&} + [K] {SS} ~ {S~p} (5) 
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The elements in the matrices of equation 
(1) are shown in Figures 2, 3 and 4. Figure 

5 gives the displacement and force vectors. 
Equation (1) can be solved along w'ith the 
thermodynamic and valve dynamic equations by 
numerical integration. 

NATURAL FREQUENCIES AND MODE SHAPES 

The acoustic behavior of the compressor dis­
charge network has been described by using 
analogous mechanical system elements of · 
springs, masses and dampers. Thus, it is 
possible to obtain, just as with a mechanical 
system, a set of natural frequencies and 
modes. When excited by a harmonic force 
at one of these frequencies, the response, 
in the absence of damping, will become in­
finite. If however the response is initi­
ated in some way at a natural frequency 
and forcing is immediately removed, the re­
sponse will continue at that frequency with a 
particular pattern. This pattern, or mode 
shape, is unique to that frequency. In 
general, an 8-degree-of-freedom system will 
have 8 natural frequencies and associated 
mode shapes which may be found by reworking 
equation (1). 

For undamped free vibration, equation (1) 
can be simplified to 

where 

[M'] HJ + [K'] {!;} 0 

8x8 
[M'] 

8x8 
[K I l 

9x9 
[M] 

9x9 
~ [K] 

Row 9 deleted 
Column 9 deleted 

Row 9 deleted 
Column 9 deleted 

(6) 

(7) 

(8) 

The deletions of row 9 and column 9 come 
about because elements in this row and 
this column describe the influence of the 
anechoic exit pipe. The influence of the 
anechoic discharge pipe is that of a 
damping element and is not considered in 
the eigenvalue analysis of the undamped 
system. However note, that if the pipe 
would not be anechoic, it could not any 
longer be deleted from the eigenvalue 
determination. 

At a natural frequency, the response of 
the system will be harmonic 

(9) 

Substituting this into equation (6) yields 

[[K']- w2 [M']] {X} 0 (10) 

This equation is satisfied if 

{X} ~ 0 (11) 

However, this solution is a case of no 



interest. Another solution is 
letting the determinant of the 

[A] [ [ K I l - w 2 
[ [M I ]] 

be zero: IAI "" 0 

found by 
matrix 

(12) 

(13) 

This is called the characteristic equation 
and represents the classical eigenvalue 
problem. It is solved for the natu~al ~re­quencies, or eigenvalues. By subst~tut~ng these eigenvalues into equation (10) one at a time, each eigenvector, or mode shape, may be found. The matrix [A] is given in Figure 
6. 

A program was written to generate the ele­
ments of the matrix, [A], and a library 
subroutine to solve the generalized eigenvalue problem, given by equation (13), was used. The following natural frequencies were obtained for the example case: 

fo 0 Hz f4 764 Hz 

fl 267 Hz fs 820 Hz 

f2 290 Hz f6 840 Hz 

f3 433 Hz f7 897 Hz 

The numbers themselves are meaningless in the confines of this paper, since compressor dimensions are not defined. What is of interest is, that since none of the lumped elements is "fixed" to ground, a zero 
natural frequency exists. It corresponds to a rotational mode in which the masses 
move in a circle around the compressor axis so that they remain the same volume distance from each other with no "springs" stretched. 

·The first nonzero natural frequency has an acoustic displacement mode shape of 

1.00 
1. 80 
1. 81 
1.47 

-1.09 
-1.87 
-1.76 
-1.37 

with a corresponding volume displacement 
mode shape of 

[SX]l 

1. 00 
1. 33 
1.81 
1. 09 

-1.09 
-1.38 
-1.76 
-1.01 

(14) 

(15) 

Again, the absolute numbers have no meaning attached. Only the character of the modes 
is of interest here. 

Equation (14) gives the plug displacement 

at each of the mass locations, relative to X = 1, for the response at 267 Hz. This 
c!k be visualized in Figure 7. As suggested previously when formulating equation (5), volume displacement is often a more in­
teresting quantity since the change in cavity volume is proportional to the acoustic pres­sure in the cavity. So, the volume dis­placement mode shape for 267 Hz is shown in Figure 8. 

Since ~SlR XlR] is gr7ater than [SlL x1LJ, there ~s an ~ncrease ~n the volume of 
cavity 11. Thus the "acoustic" pressure in the cavity is negative, denoted by a (-) in Figure 8. The relative magnitude of the pressure is given by 

(16) 

Similar negative acoustic pressures exist in cavities 12, 41, and 42 while the acoustic pressure is positive in discharge cavities 21, 22, 31, and 32. Equations such as (16) can be formulated for the relative values 
of the other pressures. These constitute an acoustic pressure mode shape associated with the second natural frequency, and it 
is (normalized with respect to cavity ll) 

I 
1.00 
0.94 

-2.18 
-2.56 

l
-0. 88 
-0.48 

2.27 
2.55 

(17) 

Figure 9 is a sketch meant to represent the mode shape given by equation (17). Here again, the length of the arrows correspond to the relative magnitude of the pressure in the cavities. Outward pointing arrows represent a pressure increasing with 
acoustic pressure 11 while an arrow pointing toward the center represents a cavity pres­
sure which is negative when the pressure in cavity ll is positive. For instance, if the system were excited at 267 Hz with forcing such that the acoustic pressure in cavity 11 is 2 psi, then the response in cavity 12 is 1.88 psi while in cavity 21 it will be out 
of phase with.Pi1 with a magnitude of 4.36 psi. Also, if this mode was the dominant mode excited at some other frequency, one might expect that the acoustic pressure in cavities 21, 22, 41 and 42 would be larger 
than the fluctuating pressures in the other cavities. 

The acoustic pressure mode shapes for the other frequencies are shown in Figure 10 and are 
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r LOO r 1.13 
0.67 L 97 

{pa}2 t::ii 
{ a} 

p 3 

-1.19 
-0.44 l- 16 

0.06 117 

1. 00 1. 00 
0.26 o.os 

-0.66 -0.42 
{pa}4 0.28 {pa}s 0.39 (18) 

0.95 -1. OS 
0.30 0.03 

l-1. 01 0.28 
-0.28 -0.40 

1. 00 1. 00 
2.14 -1.04 

-3.57 1. 56 

{pa}6 -0.97 {pa}7 -0.25 
4.30 0.62 

-3.00 -0.23 
7.39 0.40 

-4.93 -0.33 

HOW TO USE NATURAL FREQUENCY AND MODE IN­
FORMATION IN DESIGN 

To dramatize the use of natural frequency 
and mode information in design, let us not 
only look at compressors that run at nearly 
constant speed, like refrigeration com­
pressors for appliance type applications, 
but rather at compressors that experience 
a large crank speed range, like for instance 
in automotive applications. 

For a typical compressor of this type (exact 
dimensions and parameters are of no im­
portance in this example), we will get gas 
oscillations that are much larger in 
amplitude at certain crankspeeds than nor­
mally expected. For instance, simulation 
results taken at three speeds show small 
amplitude oscillations at 1000 RPM, medium 
activity at 3000 RPM and very pronounced 
oscillations at 5500 RPM (Figure 11). 

The speeds at which large oscillations occur 
can be predicted, without running a com­
plete simulation model which is relatively 
costly and laborsome, by generating from 
the natural frequency data a table that 
lists critical crankspeeds in descending 
order of importance as function of the dis­
charge system natural frequency that is . 
excited and the multiple of the crank speed 
that does the exciting. It can be shown 
from mathematical considerations, that as 
lower the harmonic number defining the 
multiple of the crank speed is, as more 
pronounced in an amplitude sense will be 
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in general the gas oscillations at that 
crankspeed. This applies for the fre­
quency range that is of interest for thermo­
dynamic performance. Especially severe 
are cases where there are not only low har­
monic numbers, but where the mode number 
is low also. For the example case, the 
table is given as Figure 12. 

The table is generated by realizing that 
whenever 

m N 
~= fn (19) 

we excite a natural mode. In this formula 

N crankspeed [RPM] 

m 1, 2, •.. , oo and is 
the harmonic number 

fn natural frequency 

n 0, 1, 2, •.. and indicates 
the natural mode and fre­
quency as subscript 

To make sure that no important crankspeed 
gets forgotten, it is best to list natural 
frequencies across and harmonic numbers 
down. For every combination, the value of 

N is obtained from Equation (19). The 
reason that some N values are blanked out 
is that for the example case 6000 RPM was 
the upper speed limit. 

Let us now use the table. According to it 
we indeed expect large oscillation ampli­
tudes in the vicinity of 5500 RPM. To be 
exact, at: 5380 and 5802 RPM. The ex­
ample illustrates that one does not 
necessarily have to hit the critical speeds 
exactly. Coupling of the natural modes 
due to damping effects will spread the 
area in which to expect large amplitude 
oscillations. 

Natural modes are another important piece 
of information for the designer. Those 
modes whose shape is encouraged by the 
particular phasing of the pistons will be 
excited stronger than mode shapes that 
are not encouraged by the piston phasing. 
This mode shape encouragement can override 
the harmonic number criteria outlined before 
in certain cases. Thus, if in the four 
cylinder piston case each pair of opposing 
cylinders discharges out of phase while 
the two pairs are z radians crank angle 
out of phase, the modes associated with 
f1, f2 and fs will be encouraged, that is, 
excited more, while the modes associated 
with £3, f4, f6 and f7 will be discouraged, 
that is, excited less. 

Thus, the recommended procedure is to: 

1. Obtain natural frequencie-s and modes 
of discharge and suction systems 
either theoretically as shown in this 



paper, or experimentally. 

2. Generate a table as discussed before. 
(Note that if the compressor runs 

more or less at a constant speed, you 
have to generate the table only for 
a relatively narrow speed range.) 

3. Investigate if a low harmonic number 
occurs. 

4. Change natural frequencies of system, 
if necessary, by changing neck di­
mensions or volume sizes. 

5. Investigate the piston phasing of 
the natural mode shapes. Change 
phasing, if necessary and feasible. 

SUMMARY 

A case study of a discharge manifold system 
for a four cylinder compressor was presented 
where particular attention was given to 
the role of natural frequencies and modes 
in the gas oscillation behavior. 

The paper presented the equations of motion 
and showed how natural frequencies and 
modes were found for the example case. 

It discussed the use of this information 
in design. 
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NOMENCLATURE 

M ~ mass matrix terms (N sec 2/m] 

C = damping matrix terms [N sec/m] 
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K stiffness matrix terms [N/m] 

t = "plug" displacements [m] 

S ~ effective "plug" area [m2 ] 

~p = pres~ure differential across "plug" 
[N/m ] 

n 

w 

~L 

L 

f 
n 

m 

= damping coefficient [1/sec] 

frequency [rad/sec] 

end correction [m] 

"plug" length 

natural frequency [1/sec] 

= natural mode [m] 

pressure with respect to mean 
pressure [N/m2] 

speed of sound at mean discharge 
pressure [mjsec] 

mean discharge density [N sec2;m4 ] 

crankspeed [RPM] 

= harmonic number 

n = natural frequency and mode number 

v 



Figure 1 Discharge System 
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Figure 7. Gas Displacement Mode 
Associated with f 1 

lL lR 

Figure 9 Pressure Mode Associated 
with f 1 
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4L 

Figure 8 Gas Volume Displacement 
Mode Associated with f 1 
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Figure 10 The Other Pressure Modes 
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Harmonic of Running Speed 
Which Excites Mode 

j Natural Frequency of Mode Excited 

r~l~l <~90 4.;:-1 i'F,tl :"11:·1) ;.; ! 0 :::·;1/ 

,, .! 
~~ ··_.,)•" 
3 !;i3H ,, 4000 
~ 3200 :3481 
6 2(.(,7 2901 
? 2286 2486 ,, 2000 2176 3252 
9 17'?8 1934 2890 

10 1600'· 1740 2601 4'J18 !::,::::-:o 
11 1455 1582 236~.5 41?1 4:::'11 
!"'' c 13::;3. 1•100 2160 ·-1-09:3 4202 '4-oJ::::::: 
1 ') 12~1 1339 2001 ~:"/8:3 38?'3 4138 
1-! 1143 1243 185B ~:~'ol 3 3602 3::::43 
j!j 10157 1160 1734 30~58 ~:.-:7(3 :3~162 3~·"'7 
1G 1000 1088 1626 28G7 ~:074 31'52 3;:';:;3 
17 941 11)24 1530 2698 ;.:-_::::9.3 2S6(~ 3165 
1:3 8:39 . 967 14•15 2548 2'1.32 2G02 2':.t89 
!') :342 916 136'=1 2414 f:j(.:08 26cA 2:3:3l~ 

2i.l 800 :::"('0 1301 2293 N59 2~~~-=:t 2(.-:-:o 
;o· l ?62 E:29 123') <:•1.84 ;:.-.342 2401 (:.\~:,,-:,;:; 

-,, 727 ?91 11:?.2 '"~0~15 223~j 2292 ~=-~·~·~5 .c.~-

2~:: 696 ?57 1131 1 9":"!4 21~:8 2l.'J3 2~'-3~ 
.~. ·"' 667 "i'25 1 o":-1 1911 ;:::o<~·J 2101 22~l2 ,;.·.,. 
2'.:1 t-40 696 1040 UBS I96'f 2017 2'1~i2 

21; 6\'5 ~.69 1 Oljl) 1 i'•~·l 1892 19~ 0 21)':?.9 
2? ~~93 645 96:: )699 11::2~ 1868 1·:n3 
<0·~ 5?1 62.2 92'? 16 3;~ 1'?56 1801 19.~1 

2'J ~~j2 600 897 15~:2 16":tG 1?39 185~· 

30 533 580 867 15<:S> 163'3 1681 1793 
:n 516 5€.1 839 1480 1~:::6 1627 1735 
.:::2 500 5•H :::13 14:33 1.:•r.,~_, 1~76 1681 ... •..::·· 
33 485 527 788 1390 1490 1~i28 lE-30 
~:-1 471 512 765 1349 1•H6 14:33 1:582 
.-. .:.· 457 •197 743 1311 141)'j 14··H l':i8? ..::• ... 1 

::.:1::. 4<14 483 723 1274 1866 1401 14-;14 
3'(' 482 470 703 1240 ,:~29 1363 1454 

.38 421 458 685 1207 1<'94 1327 1416 
39 410 446 667 1176 1261 1293 1379 
40 400 435 650 1147 1230 1261 1345 

Figure 12 Table of Critical Crank Speeds 
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