85 research outputs found

    Multi-domain comparison of safety standards

    Get PDF
    International audienceThis paper presents an analysis of safety standards and their implementation in certification strategies from different domains such as aeronautics, automation, automotive, nuclear, railway and space. This work, performed in the context of the CG2E ("Club des Grandes Entreprises de l'Embarqué"), aims at identifying the main similarities and dissimilarities, for potential cross-domain harmonization. We strive to find the most comprehensive 'trans-sectorial' approach, within a large number of industrial domains. Exhibiting the 'true goals' of their numerous applicable standards, related to the safety of system and software, is a first important step towards harmonization, sharing common approaches, methods and tools whenever possible

    The role of hemoadsorption in cardiac surgery - a systematic review

    Get PDF
    BACKGROUND: Extracorporeal blood purification has been widely used in intensive care medicine, nephrology, toxicology, and other fields. During the last decade, with the emergence of new adsorptive blood purification devices, hemoadsorption has been increasingly applied during CPB in cardiac surgery, for patients at different inflammatory risks, or for postoperative complications. Clinical evidence so far has not provided definite answers concerning this adjunctive treatment. The current systematic review aimed to critically assess the role of perioperative hemoadsorption in cardiac surgery, by summarizing the current knowledge in this clinical setting. METHODS: A literature search of PubMed, Cochrane library, and the database provided by CytoSorbents was conducted on June 1st, 2023. The search terms were chosen by applying neutral search keywords to perform a non-biased systematic search, including language variations of terms "cardiac surgery" and "hemoadsorption". The screening and selection process followed scientific principles (PRISMA statement). Abstracts were considered for inclusion if they were written in English and published within the last ten years. Publications were eligible for assessment if reporting on original data from any type of study (excluding case reports) in which a hemoadsorption device was investigated during or after cardiac surgery. Results were summarized according to sub-fields and presented in a tabular view. RESULTS: The search resulted in 29 publications with a total of 1,057 patients who were treated with hemoadsorption and 988 control patients. Articles were grouped and descriptively analyzed due to the remarkable variability in study designs, however, all reported exclusively on CytoSorb®^{®} therapy. A total of 62% (18/29) of the included articles reported on safety and no unanticipated adverse events have been observed. The most frequently reported clinical outcome associated with hemoadsorption was reduced vasopressor demand resulting in better hemodynamic stability. CONCLUSIONS: The role of hemoadsorption in cardiac surgery seems to be justified in selected high-risk cases in infective endocarditis, aortic surgery, heart transplantation, and emergency surgery in patients under antithrombotic therapy, as well as in those who develop a dysregulated inflammatory response, vasoplegia, or septic shock postoperatively. Future large randomized controlled trials are needed to better define proper patient selection, dosing, and timing of the therapy

    Mitochondrial complex I defect resulting from exercise-induced lower limb ischemia in patients with peripheral arterial disease

    Get PDF
    This study aims to compare the structural and mitochondrial alterations between muscle segments affected by exercise-induced ischemia and segments of the same muscle without ischemia, in the same subject. In a prospective analysis, 34 patients presenting either peripheral arterial disease or chronic coronary syndrome without any evidence of peripheral arterial disease were eligible for inclusion based on findings indicating a need for either a femoro-popliteal bypass or a saphenous harvesting for coronary bypass. Before surgery, we assessed the level of exercise-induced ischemia in proximal and distal sections of the thigh by the measurement of transcutaneous oxygen pressure during an exercise treadmill test. Distal and proximal biopsies of the sartorius muscle were procured during vascular surgical procedures to assess mitochondrial function and morphometric parameters of the sartorius myofibers. Comparisons were made between the distal and proximal biopsies, with respect to these parameters. Thirteen of the study patients that initially presented with peripheral arterial disease had evidence of an isolated distal thigh exercise-induced ischemia, associated with a 35% decrease in the mitochondrial complex I enzymatic activity in the distal muscle biopsy. This defect was also associated with a decreased expression of the manganese superoxide dismutase enzyme and with alterations of the shapes of the myofibers. No functional or structural alterations were observed in the patients with coronary syndrome. We validated a specific model ischemia in peripheral arterial disease characterized by muscular alterations. This "Distal-Proximal-Sartorius Model" would be promising to explore the physiopathological consequences specific to chronic ischemia. NEW & NOTEWORTHY We compared proximal versus distal biopsies of the sartorius muscle in patients with superficial femoral artery stenosis or occlusion and proof of, distal only, regional blood flow impairment with exercise oximetry. We identified a decrease in the mitochondrial complex I enzymatic activity and antioxidant system impairment at the distal level only. We validate a model to explore the physiopathological consequences of chronic muscle ischemia

    Synaptic release of dopamine in the subthalamic nucleus.

    No full text
    The direct modulation of subthalamic nucleus (STN) neurons by dopamine (DA) neurons of the substantia nigra (SN) is controversial owing to the thick caliber and low density of DA axons in the STN. The abnormal activity of the STN in Parkinson's disease (PD), which is central to the appearance of symptoms, is therefore thought to result from the loss of DA in the striatum. We carried out three experiments in rats to explore the function of DA in the STN: (i) light and electron microscopic analysis of tyrosine hydroxylase (TH)-, dopamine beta-hydroxylase (DbetaH)- and DA-immunoreactive structures to determine whether DA axons form synapses; (ii) fast-scan cyclic voltammetry (FCV) to determine whether DA axons release DA; and (iii) patch clamp recording to determine whether DA, at a concentration similar to that detected by FCV, can modulate activity and synaptic transmission/integration. TH- and DA-immunoreactive axons mostly formed symmetric synapses. Because DbetaH-immunoreactive axons were rare and formed asymmetric synapses, they comprised the minority of TH-immunoreactive synapses. Voltammetry demonstrated that DA release was sufficient for the activation of receptors and abolished by blockade of voltage-dependent Na+ channels or removal of extracellular Ca2+. The lifetime and concentration of extracellular DA was increased by blockade of the DA transporter. Dopamine application depolarized STN neurons, increased their frequency of activity and reduced the impact of gamma-aminobutyric acid (GABA)-ergic inputs. These findings suggest that SN DA neurons directly modulate the activity of STN neurons and their loss may contribute to the abnormal activity of STN neurons in PD

    Properties of neurons in external globus pallidus can support optimal action selection

    No full text
    The external globus pallidus (GPe) is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN) neurons computes the normalization term in Bayes’ equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called ‘prototypic’ and ‘arkypallidal’ neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with experimentally-reported connectivity and input-output functions (f-I curves) of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions

    Uncommon Presentation of Syphilitic Aortitis

    Get PDF
    AbstractA 71-year-old lady underwent an aortobifemoral bypass for extensive vascular disease which was found to be caused by syphilitic aortitis. She made a good initial recovery from the procedure but succumbed to septicaemia on the 20th postoperative day despite the use of appropriate antibiotics. Syphilis remains a rare cause of aortitis

    The subthalamic nucleus: a hub for sensory control via short three-lateral loop connections with the brainstem?

    No full text
    The subthalamic nucleus (STN) is classically subdivided into sensori-motor, associative and limbic regions which is consistent with the involvement of this structure in motor control, but also in cognitive and emotional tasks. However, the function of the sensory inputs to the STN’s sensori-motor territory is comparatively less well explored, although sensory responses have been reported in this structure. There is still a paucity of information regarding the characteristics of that subdivision and its potential functional role in the basal ganglia processing and more widely in associated networks. In this Perspective paper, we summarize the type of sensory stimuli that have been reported to activate the STN, describe the complex sensory properties of the STN and its anatomical link to a sensory network involving the brainstem, characterized in our recent work. Analyzing the sensory input to the STN led us to suggest the existence of previously unreported three-lateral subcortical loops between the basal ganglia and the brainstem which do not involve the cortex. Anatomically, these loops closely link the STN, the substantia nigra pars reticulata and various structure from the brainstem such as the superior colliculus and the parabrachial nucleus. We also discuss the potential role of the STN in the control of sensory activity in the brainstem and its possible contribution to favoring sensory habituation or sensitization over brainstem structures to optimize the best selection of action at a given time

    Sparse but Selective and Potent Synaptic Transmission From the Globus Pallidus to the Subthalamic Nucleus

    No full text
    The reciprocally connected GABAergic globus pallidus (GP)-glutamatergic subthalamic nucleus (STN) network is critical for voluntary movement and an important site of dysfunction in movement disorders such as Parkinson's disease. Although the GP is a key determinant of STN activity, correlated GP-STN activity is rare under normal conditions. Here we define fundamental features of the GP-STN connection that contribute to poorly correlated GP-STN activity. Juxtacellular labeling of single GP neurons in vivo and stereological estimation of the total number of GABAergic GP-STN synapses suggest that the GP-STN connection is surprisingly sparse: single GP neurons maximally contact only 2% of STN neurons and single STN neurons maximally receive input from 2% of GP neurons. However, GP-STN connectivity may be considerably more selective than even these estimates imply. Light and electron microscopic analyses revealed that single GP axons give rise to sparsely distributed terminal clusters, many of which correspond to multiple synapses with individual STN neurons. Application of the minimal stimulation technique in brain slices confirmed that STN neurons receive multisynaptic unitary inputs and that these inputs largely arise from different sets of GABAergic axons. Finally, the dynamic-clamp technique was applied to quantify the impact of GP-STN inputs on STN activity. Small fractions of GP-STN input were sufficiently powerful to inhibit and synchronize the autonomous activity of STN neurons. Together these data are consistent with the conclusion that the rarity of correlated GP-STN activity in vivo is due to the sparsity and selectivity, rather than the potency, of GP-STN synaptic connections
    • …
    corecore