12 research outputs found

    Bosons in high temperature superconductors: an experimental survey

    Full text link
    We review a number of experimental techniques that are beginning to reveal fine details of the bosonic spectrum \alpha^2F(\Omega) that dominates the interaction between the quasiparticles in high temperature superconductors. Angle-resolved photo emission (ARPES) shows kinks in electronic dispersion curves at characteristic energies that agree with similar structures in the optical conductivity and tunnelling spectra. Each technique has its advantages. ARPES is momentum resolved and offers independent measurements of the real and imaginary part of the contribution of the bosons to the self energy of the quasiparticles. The optical conductivity can be used on a larger variety of materials and with the use of maximum entropy techniques reveals rich details of the spectra including their evolution with temperature and doping. Scanning tunnelling spectroscopy offers spacial resolution on the unit cell level. We find that together the various spectroscopies, including recent Raman results, are pointing to a unified picture of a broad spectrum of bosonic excitations at high temperature which evolves, as the temperature is lowered into a peak in the 30 to 60 meV region and a featureless high frequency background in most of the materials studied. This behaviour is consistent with the spectrum of spin fluctuations as measured by magnetic neutron scattering. However, there is evidence for a phonon contribution to the bosonic spectrum as well.Comment: 71 pages, 52 figure

    Omega-3 Fatty Acids Modify Human Cortical Visual Processing—A Double-Blind, Crossover Study

    Get PDF
    While cardiovascular and mood benefits of dietary omega-3 fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are manifest, direct neurophysiological evidence of their effects on cortical activity is still limited. Hence we chose to examine the effects of two proprietary fish oil products with different EPA∶DHA ratios (EPA-rich, high EPA∶DHA; DHA-rich) on mental processing speed and visual evoked brain activity. We proposed that nonlinear multifocal visual evoked potentials (mfVEP) would be sensitive to any alteration of the neural function induced by omega-3 fatty acid supplementation, because the higher order kernel responses directly measure the degree of recovery of the neural system as a function of time following stimulation. Twenty-two healthy participants aged 18–34, with no known neurological or psychiatric disorder and not currently taking any nutritional supplementation, were recruited. A double-blind, crossover design was utilized, including a 30-day washout period, between two 30-day supplementation periods of the EPA-rich and DHA-rich diets (with order of diet randomized). Psychophysical choice reaction times and multi-focal nonlinear visual evoked potential (VEP) testing were performed at baseline (No Diet), and after each supplementation period. Following the EPA-rich supplementation, for stimulation at high luminance contrast, a significant reduction in the amplitude of the first slice of the second order VEP kernel response, previously related to activation in the magnocellular pathway, was observed. The correlations between the amplitude changes of short latency second and first order components were significantly different for the two supplementations. Significantly faster choice reaction times were observed psychophysically (compared with baseline performance) under the EPA-rich (but not DHA-rich) supplementation, while simple reaction times were not affected. The reduced nonlinearities observed under the EPA-rich diet suggest a mechanism involving more efficient neural recovery of magnocellular-like visual responses following cortical activation

    LDA+DMFT approach to ordering phenomena and the structural stability of correlated materials

    Get PDF
    Materials with correlated electrons often respond very strongly to external or internal influences, leading to instabilities and states of matter with broken symmetry. This behavior can be studied theoretically either by evaluating the linear response characteristics, or by simulating the ordered phases of the materials under investigation. We developed the necessary tools within the dynamical mean-field theory (DMFT) to search for electronic instabilities in materials close to spin-state crossovers and to analyze the properties of the corresponding ordered states. This investigation, motivated by the physics of LaCoO3, led to a discovery of condensation of spinful excitons in the two-orbital Hubbard model with a surprisingly rich phase diagram. The results are reviewed in the first part of the article. Electronic correlations can also be the driving force behind structural transformations of materials. To be able to investigate correlation-induced phase instabilities we developed and implemented a formalism for the computation of total energies and forces within a fully charge self-consistent combination of density functional theory and DMFT. Applications of this scheme to the study of structural instabilities of selected correlated electron materials such as Fe and FeSe are reviewed in the second part of the paper
    corecore