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Abstract A general, compositional, and component-based contract theory is proposed for
modeling and specifying heterogeneous systems, characterized by consisting of parts from
different domains, e.g. software, electrical and mechanical. Given a contract consisting of
assumptions and a guarantee, clearly separated conditions on a component and its environ-
ment are presentedwhere the conditions ensure that the guarantee is fulfilled—a responsibility
assigned to the component, given that the environment fulfills the assumptions. The condi-
tions are applicable whenever it cannot be ensured that the sets of ports of components are
partitioned into inputs and outputs, and hence fully support scenarios where components,
characterized by both causal and acausal models, are to be integrated by solely relying on the
information of a contract. An example of such a scenario of industrial relevance is explicitly
considered, namely a scenario in a supply chain where the development of a component is
outsourced. To facilitate the application of the theory in practice, necessary properties of
contracts are also derived to serve as sanity checks of the conditions. Furthermore, based
on a graph that represents a structuring of a hierarchy of contracts, sufficient conditions to
achieve compositionality are presented.

Keywords Contract · Heterogeneous systems · Architecture · Component · Specification ·
Composition

1 Introduction

The notion of contracts was first introduced in [1] as a pair of pre- and post-conditions [2]
to be used in formal specification of software (SW). In more recent contract theory [3–
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5], developed within European project SPEEDS [6], the use of contracts is extended from
formal specification of SW to serving as a central systems engineering philosophy to support
the design of heterogeneous systems [7–9]. Heterogeneous systems are characterized by
consisting of parts from multiple domains, e.g. SW, mechanical, electrical, etc. The use of
theory [3–5] has been advocated in several contexts, e.g. PlatformBasedDesign in [5],Model
Based Design in [10], safety analyzes in [11], virtual integration and testing in [12], and for
structuring safety requirements in [13–15].

With the intent to be able to model and specify heterogeneous systems, the theory in [3–5]
considers a basic component-based modeling formalism that relies on a “language-based
abstraction where composition is by intersection. [...] No particular model of computation
and communication is enforced, and continuous time dynamics such as those needed in
physical system modeling is supported as well.” [3]

More specifically, the theory in [3–5] is centered around the notion of a component M with
a set of ports and an implementation, also denoted M , which is an assertion, i.e. a set of value
sequences over the ports. A contract C for component M is a pair of assertions (A, G)where
G represents an intended property such as a requirement [16–18] or a design constraint. The
responsibility that guarantee G is fulfilled, is assigned to component M , given that certain
assumptions A are fulfilled—a responsibility of the environment of the component. This clear
separation of responsibilities, embodied by a contract, is a principle for seamless integration
of components, a primary concern in heterogeneous systems development, characterized by
complex supply chains distributed over multiple organizations [3,5].

To concretize the separation of responsibilities embodied by a contract in theory [3–5],
contract satisfiability conditions are presented.Given that “M and C have the same ports” [3],
component M satisfies C if A∩M ⊆ G. This satisfaction relation ensures that the composition
of component M and an environment component ME where ME ⊆ A fulfills the guarantee,
i.e. that ME ∩ M ⊆ G. Hence, given that contract C is limited to the set of ports of M , to
ensure that guarantee G is fulfilled, conditions on component M and its environment ME

can be separated as A ∩ M ⊆ G and ME ⊆ A, respectively.
However, guarantee G is trivially fulfilled if ME ∩ M = ∅, which is an undesirable case

since it characterizes a contradiction if ME and M are represented through logical formulas.
In addition, allowingG to be trivially fulfilledmeans that a component where A∩M = ∅ (and
in particular where M = ∅) is always an acceptable solution, regardless of how environment
ME is implemented. Notably, the theory in [3–5] does not explicitly address this undesirable
case, but the theory does propose an approach to further separate responsibilities, which
indirectly leads to that non-trivial solution ME ∩ M = ∅ is avoided in the typical case.
This approach is to partition the sets of ports of component M and its environment ME into
mirroring inputs and outputs, and enforcing the additional conditions that M and ME are
receptive to their inputs, i.e. that any values of the inputs are allowed by the implementations
at any point in time.

From these basic concepts of theory [3–5], it can be observed that in order to ensure both
that guarantee G is fulfilled ME ∩ M ⊆ G and that trivial solution ME ∩ M = ∅ is avoided,
it is necessary to enforce conditions A ∩ M ⊆ G, ME ⊆ A, and that M and ME are receptive
to their inputs. However, in order to enforce these conditions, the two following prerequisites
apply:

(a) the sets of ports of component M and its environment ME are partitioned into mirroring
inputs and outputs; and

(b) contract C = (A, G) is limited to the set of ports of component M .
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Hence, trivial solution ME ∩ M = ∅ is avoided in the theory in [3–5] only through
prerequisite (a), expressing that the causality of the ports are specified. However, considering
typical models of the parts of a heterogeneous system, including not only SW, but also
physical parts (mechanical, electrical, etc.), in addition to causal models, there would also
be acausal models [19] where the causality of ports is unspecified, which is common in e.g.
Modelica [20,21]. In fact, as stated in [19], whenmodeling physical parts, acausal models are
well suited given that they reflect the physical structure of the parts and are alsomore reusable
than causal models since the solution direction is not fixed. Hence, prerequisite (a) expresses
a limitation of the theory in [3–5] and highlights the need for conditions on a component
and its environment where these conditions ensure that the guarantee is non-trivially fulfilled
∅ �= ME ∩ M ⊆ G whenever prerequisite (a) is not ensured.

Regarding prerequisite (b), while the theory in [3–5] only supports contracts that are
limited to the sets of ports of components, there are at least two strong reasons why such a
limitation needs to be relaxed in the context of specifying heterogeneous systems.

The first reason is to support a central principle in requirements engineering (RE) [16–
18] where this principle expresses that requirements for a system should be expressed over
ports that are not of the system, but rather in the environment [18]. In accordance with [18],
systems are developed to make the behavior of the environment satisfactory and thus, all
requirements on a system should be statements about the environment. An example of when
this RE principle is made utterly explicit is the functional documents model [22,23] where, in
the context of a SW system represented as a predicate SO F , there are four distinct collections
of ports: m and c for quantities respectively monitored and controlled by peripheral devices
attached to SO F ; and i and o for input and output registers of SO F . SW system SO F
and ports are shown in Fig. 1 as a rectangle filled with gray and boxes, respectively. In
accordance with this model, requirements are described as a predicate RE Q(m, c), which
is to be fulfilled by SO F given environment assumptions expressed as predicates: I N (m, i)
on how sensors transform monitored values to their internal representation; OU T (o, c) on
how actuators transform software outputs to controlled values; and N AT (m, c) on the rest
of the environment. Interpreted through contracts theory, these predicates form a contract
(I N (m, i) ∧ OU T (o, c) ∧ N AT (m, c), RE Q(m, c)) for SO F where this contract is not
limited to the set of ports of SO F .

An example where this RE principle is manifested in an industrial case study can be found
in [24] where ModelicaML [25] is used to specify and verify requirements on a subsystem
of a fuel management system where the requirements express the end-to-end functionality
of the fuel management system in general. Another example can be found in [26] where
SysML [27] is used to specify requirements on an engine knock controller and where the
requirements allocated to the controller explicitly refer to parts, such as the piston, which is
not a port of the controller but rather a port in its environment.

The second reason why contracts that are not limited to component ports are needed is due
to the fact that, in the area of functional safety [28,29], the associated risk of a component, is
assessed in the context of how it affects its environment. Hence, in order to properly express
a safety specification for a component using a contract, there is a need to refer to parts in the
environment that the component is to be deployed in [14]. For example, in functional safety
standard ISO 26262 [29], top-level safety requirements for an item, i.e. a system within the
vehicle, are formulated in order to prevent or mitigate hazards, where these hazards

“shall be defined in terms of the conditions or behaviour that can be observed at the
vehicle level” [29].
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Fig. 1 A SW system SO F and
its inputs i and outputs o;
requirements RE Q(m, c);
assumptions I N (m, i),
OU T (o, c), and N AT (m, c);
and ports m and c in the
environment of SO F

SOF

NAT (m, c)

i o

IN(m, i) OUT (o, c)

REQ(m, c)

m c

Hence, in order for a contract to capture the fact that one overall responsibility of the item
is to mitigate or prevent the hazard, which extends beyond the ports of the item, a contract
that is not limited to the set of ports of the item, is needed. This can be observed in industrial
examples [13,14], and also in [30], where safety requirements that are not limited to the sets
of ports of components are necessarily used in order to properly express safety specifications
for components.

In the context of specifying heterogeneous systems, the two reasons above explain the
importance of relaxing the limitation expressed in prerequisite (b) such that assumptions
and guarantees can be specified, not only over the ports of a component, but also over ports
in the environment of the component. Considering this, and the previous stated fact that
prerequisite (a) also expresses a limitation of theory [3–5], it can be concluded that there is a
need for conditions on a component and its environment where these conditions ensure that
the guarantee is non-trivially fulfilled ∅ �= ME ∩ M ⊆ G, whenever prerequisite (a) cannot
be ensured and regardless of whether prerequisite (b) holds or not.

Contributions As the main contribution of the present paper, a set of clearly separated con-
ditions on a component and its environment are established where the conditions ensure
that the guarantee is non-trivially fulfilled. These conditions are, in contrast to the condi-
tions presented in [3], applicable whenever it cannot be ensured that prerequisites (a) and
(b) hold or not. More specifically, the main contribution shows that in order for relation
∅ �= ME ∩ M ⊆ G to hold, the respective conditions on the component and the environment
can be separated as:

(i) A ∩ M ⊆ G and A ∩ G ⊆ M ; and
(ii) ME ⊆ A and ME ∩ G �= ∅,
where M is limited to constraining only the set of ports of the component, but where A and
G are not. Note that this includes the considered case in [3] where A and G only constrain
the ports of the component. In fact, it is proven that condition (i) is a necessary and sufficient
condition on component M to ensure that relation ∅ �= ME ∩ M ⊆ G holds for each
environment ME that is such that condition (ii) holds. This means that conditions (i) and
(ii) fully support any scenario where a component and its environment are developed in
complete isolation; the only information that needs to be shared is a contract and the set of
ports of the component where this set is not required to be partitioned into inputs and outputs.
An example of such a scenario of industrial relevance is explicitly considered throughout
the paper, namely a scenario in a supply chain where the development of a component is
outsourced from a client to a supplier. In this scenario, the supplier is to ensure that condition
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(i) on the component holds, while the client is to ensure that condition (ii) on the environment
holds.

A second contribution considers the fact that the relaxation of the limitation expressed in
the prerequisite (b) leads to increased expressiveness with respect to how a contract can be
specified. However, the increased expressiveness is not unlimited since there are necessary
restrictions on the ports constrained by the assumptions and the guarantee of a contract in
order for conditions (i) and (ii) to hold. Therefore, to facilitate the specification of contracts in
practice, conditions, called scoping conditions, are introduced to limit the set of ports that the
assumptions and the guarantee of a contract can constrain; these scoping conditions ensure
that the necessary restrictions are not violated without limiting expressiveness.

As a third contribution, considering that the contract properties consistency and compati-
bility are in [3,5] defined under the limitations expressed in prerequisites (a) and (b), revised
definitions of these properties are presented where these limitations are relaxed. More specif-
ically, in [3,5], the definitions of consistency and compatibility are based on the concept of
receptivity to inputs, but have the overall aim to ensure that a contract is such that there in
fact exist a component and an environment that are such their corresponding conditions, as
defined in [3,5], hold. In contrast to the definitions in [3,5], which require prerequisite (a)
and (b) to hold, the definitions of consistency and compatibility in the present paper do not.
Instead, consistency and compatibility are defined as necessary properties of conditions (i)
and (ii); more specifically, consistency and compatibility are defined respectively as: if there
exists a component and an environment that are such that their corresponding conditions (i)
and (ii) hold.

As a fourth and final contribution, as a basis for structuring a contract C and a set of
contracts {Ci }N

i=1 in parallel to a composition M of a set of components {Mi }N
i=1 with the

intent to establish that M is such that condition (i) holds with respect to C , a graph, called
a contracts composition structure, is introduced. Based on a contracts composition structure
and in accordance with the principle of compositionality [31,32], sufficient conditions are
provided to ensure that: composition M of {Mi }N

i=1 is such that condition (i) holds with
respect to C if each component Mi is such that condition (i) holds with respect to Ci . Hence,
the fourth contribution supports an indirect way of establishing that M is such that condition
(i) holds with respect to C when a direct approach is not feasible due to e.g. the complexity
of the composition.

The four contributions constitute a general contract theory for heterogeneous systems
where all theorems and definitions are expressed in terms of the language-independent for-
malism of assertions. This generality allows the proposed theorems and definitions to be
instantiated in more concrete theories/formalisms tailored for a specific purpose, e.g. formal
verification in tools.

Related work Notably, in addition to [3–5], there are other general theories [33–59] for
assume-guarantee reasoning. These theories and other related work will be described in
more detail in Sect. 7, and the following will instead focus solely on arguing for the fact that
the contributions of the present paper cannot be found in any of theories [3–5,33–59]. Since
the second to fourth contribution are derived with the main contribution as a foundation,
the main contribution alone will be considered as a basis of argumentation. Due to the fact
that the part of the main contribution that specifically addresses the limitation expressed in
prerequisite (a), is rather specific to assume-guarantee theories with a satisfaction relation
A ∩ M ⊆ G, namely [4,5,34–37,47,55] and one of the instantiated theories in [33], only
these will be considered when arguing for this part of the main contribution. The part of
the main contribution regarding the fact that conditions (i) and (ii) are applicable also when
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relaxing the limitation in prerequisite (b), is compared to this aspect of expressivity of other
assume-guarantee theories, in general.

Considering [4,5,33–37,47,55], the theories [4,33,37] use the same typeof approach as [3]
to avoid trivial solution ME ∩ M �= ∅ and only [34] provides an alternative approach. In [34],
a game-theoretic approach [60] is considered where the component and its environment take
turns in changing the values (called states) of variables in a fixed set. To avoid trivial solution
ME ∩ M �= ∅, the approach in [34] requires that each step (or transition) of a run also
needs to be identified as an action taken by either the component or its environment. This
means that the approach in [34] is not applicable in the case of conventional physical models
(see e.g. Modelica [20,21]) where interactions are modeled, not by an explicit separation of
actions taken by a component and its environment, but rather by equations that simultaneously
constrain each other. In contrast to [34], conditions (i) and (ii) in the present paper are indeed
applicable without the need for identifying steps as component or environment actions, and
are hence applicable for conventional physical models.

Despite the fact that contracts are limited to the sets of ports of components in [3], there
are assume-guarantee theories that do not consider such a limitation, namely [34,36,40,
44,47,48,53–55] and the meta theory in [33]. However, in contrast to the present paper,
in theories [36,44,47,48,53–55], the concept of ports is abstracted away by considering
implementations, assumptions, and guarantees as formulas or abstract properties that are
not bound to be specified over a certain structure such as a set of variables. In [34,40],
assumptions, guarantees, and implementations are all expressed over a fixed set of variables,
which means that if a subset of the fixed set is associated as the set of ports of a component,
it could be argued that contracts that are not limited to the set of ports of the component are
supported. However, in contrast to the present paper, the association of a variable as a port
of a component is only established informally since none of theories [34,40] incorporate
a means to enforce the condition that the component implementation can only constrain
its ports and no other variables in the fixed set. This does not only mean that the second
contribution of the present paper is not derivable from theories [33,34,36,40,44,47,48,53–
55], but also something more fundamental; these theories consider a looser notion of contract
satisfiability where no conditions are enforced on the set of ports that a component can
or cannot constrain. Hence, these theories do not capture the additional design conditions
enforced on the component as expressed by its set of ports, which is a fundamental principle
in many works, e.g. [39] and the present paper.

However, out of theories [3–5,35,37–39,41–43,45,46,49–52,56–59] where ports1 are
explicitly considered, none of these fully relax the limitation that assumptions and guaran-
tees must be limited to component ports. Many of these theories provide ways of extending
assumptions and guarantees to be expressed over a greater set of ports, e.g. by using inverse
projection [33]. However, despite being expressed over a greater set of ports, the extended
assumptions and guaranteewill still specify the same constraints as the non-extended assump-
tions and guarantee; in the extended case, the constraints are simply quantified over additional
ports, which are, however, not constrained. In fact, the work in [39] is the only theory that
allows assumptions to constrain ports in the environment of a component, but not guarantees.
Thus, in contrast to [39], and also [3–5,35,37–39,41–43,45,46,49–52,56–59], the present
paper allows both assumptions and guarantees to constrain ports that extend outside of the set

1 A generalization of ports as defined in [3–5] is considered here where the concept of ports encompasses
not just variables, but also labels, as long as they both are in a structure, e.g. a set, over which a component
implementation is explicitly expressed. Hence, ports characterize inputs, outputs, messages, events, signals,
actions, etc.
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of ports of a component and, thus, fully relaxes the limitation that contracts must be limited
to component ports.

While none of theories [3–5,35,37–39,41–43,45,46,49–52,56–59] fully relax the limi-
tation that contracts must be limited to component ports, it can be argued, considering the
particular aspect of relaxing such a limitation, that these theories could serve as equivalent
formalisms to the one in the present paper if the set of ports of a component is allowed to
simply include any port of the environment. These additional ports could further be labeled
as “environment ports” to distinguish them from those inherent to the component. How-
ever, in addition to this, for these theories to serve as equivalent formalisms to the one in
the present paper, there would also be a need to enforce the condition that the component
implementation can only constrain the subset of its ports that are not labeled as environ-
ment ports. Notably, the theories [3–5,35,37–39,41–43,45,46,49–52,56–59] do not support
a straightforward way to enforce such a condition since, analogous to [34,40], they do not
incorporate a means to distinguish a port that an implementation constrains from one that
it does not in the set over which the implementation is expressed. This can be contrasted
with the present paper where such a condition is enforced at the foundation of the theory,
influencing almost all definitions and theorems. Hence, considering the particular aspect of
relaxing the limitation that contracts must be limited to component ports, it is clear that
theories [3–5,35,37–39,41–43,45,46,49–52,56–59] do not serve as equivalent formalisms
to the present paper and can neither be trivially extended to serve as such.

Organization of paper Based on a theoretical foundation in Sect. 2, contracts are introduced
in Sect. 3 along with the main contribution, namely the derivation of conditions (i) and
(ii). The basis is a scenario where a contract is used to outsource the development of a
component. Considering conditions (i) and (ii), Sect. 4 presents necessary restrictions on
the set of variables over which assumptions and guarantees are specified. Definitions of
consistency and compatibility of a contract are established in Sect. 5 and Sect. 6 introduces
contracts composition structures as a means to structure a hierarchy of contracts to achieve
compositionality. Section 7 extends the related work in this section and Sect. 8 summarizes
the paper and draws conclusions.

2 Assertions and elements

This section establishes concepts formodeling a heterogeneous system and its parts, and to be
able to derive the contributions concerning contracts and their properties as will be presented
in Sects. 3, 4, 5 and 6. The concepts presented in this section mainly draws inspiration
from contract theory [3–5] developed in European research project SPEEDS [6]. Similarities
between the concepts presented in this section and the ones presented in [3–5], as well as
with other related work, are discussed briefly throughout this section and in more detail in
Sect. 7.

2.1 Assertions and runs

Let X = {x1, . . . , xN } be a non-empty set of variables. Consider a pair (xi , ξi ) consisting
of a variable xi and a trajectory ξi = {(t, xi (t))}t∈T of values of xi over a time-window
∅ �= T ⊆ R≥0. For example, Fig. 2a shows a trajectory of values of the variable x1. A
set {(x1, ξ1), . . . , (xN , ξN )} of such pairs with trajectories over the same time-window T ,
is called a run for X over T , denoted either ωX,T or simply ω. For example, a run can be
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x1
x1(t)

t

(a)

x1

x1(t)

t

x2(t)

ω{x1,x2}

x2

(b)

x

y

t

C = 0
C = 1
C = 2
C = 3

x(t) = t

y(t) = C + t2/2

(c)
Fig. 2 In (a), a trajectory of values of x1 is shown. In (b), a run ω{x1,x2},T is shown, consisting of two pairs
containing the trajectory shown in (a) and another trajectory of values of x2. In (c), a subset of the runs that

are solutions to differential equation dy
dt

= x(t), where x(t) = t are shown

a trace [56,61–63] or an execution as presented in [36]. As a more illustrative example, a
run ω{x1,x2},T consisting of two pairs is shown in Fig. 2b as a solid line in three dimensions
x1, x2, t where the trajectories of the pairs are also shown as two dashed lines. The trajectory
of values of x1 is the trajectory shown in Fig. 2a and the other trajectory consists of values
of variable x2.

In the following, a universal set of variables Ξ will be assumed where Ω will denote the
set of all possible runs for Ξ over each time-window ∅ �= T ⊆ R≥0. An assertion W is a,
possibly empty, subset of Ω , i.e. W ⊆ Ω . This notion corresponds to similar definitions in
theories [3–5,14,64]. However, these theories consider assertions as sets of runs for dissimilar
sets of variables local to the assertions, rather than sets of runs for a universal set of variables
as in the present paper. The choice of considering each run in an assertion for a universal
set of variables, i.e. the set Ξ , is inspired by [34,40] and allows to combine and compare
assertions with the use of regular set operations (e.g. ∪, ∩) and set relations (e.g. ⊆).

Note that rather than explicitly declaring its set of runs, an assertion can be expressed
through constraints, e.g. by equations, inequalities, or logical formulas. For example, an
assertionW′ expressed through equation u = v, is the set of all runs in Ω where u = v holds
for each time point.

As a second example, consider that W′′ is an assertion expressed through first order
differential equation

dy

dt
= x(t), where x(t) = t and t ∈ R≥0.
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Hence, assertion W′′ is the set of all possible runs for Ξ over R≥0 where the runs are the
solutions to the differential equation. Figure 2c shows a subset of these solutions in the
dimensions x , y, and t .

As a third example of how an assertion can be expressed, consider thatW′′′ is an assertion
expressed through logic formula a(t) = 0 ∨ b(t) = 0 where t ∈ {0, 1, . . . , 10} and where
both variables a and b take values from {0, 1}. This means that assertionW′′′ is the set of all
possible runs for Ξ over discrete time-window {0, 1, . . . , 10} where, for each time-point t ,
at least one of a and b has value 0.

2.1.1 Projection of assertions

Given an assertionW and a set of variables X , the projection [14,33,65] ofW onto X , written
projX (W), is the set obtained by removing each pair that does not contain a variable x ∈ X
from each run ωΞ,T in W, i.e.

projX (W) = {ωX,T | ωΞ,T ∈ W and ωX,T = {(x, ξ) | (x, ξ) ∈ ωΞ,T and x ∈ X}}. (1)

Note that projX (∅) = ∅ and proj∅(W �= ∅) = {∅}.
Furthermore, relation (1) corresponds to the definition of projection in [14,33], while [65]

defines projection as an operation on a single run instead of on a set of runs.
The extended projection ofW onto X is denoted p̂roj X (W) and is the assertion obtained

by extending each run ωX,T in projX (W) with all possible runs for Ξ \ X over T . That is,

p̂roj X (W) = {ω | ω ∈ Ω and projX ({ω}) ⊆ projX (W)}. (2)

Note that p̂roj∅(W) = Ω due to the fact that proj∅(W) = {∅} and proj∅({ω}) = {∅} for
each ω ∈ Ω .

The type of operation used for extending projX (W) to assertion p̂roj X (W) is called
inverse projection in [14,33]. Furthermore, if W is expressed through a logical formula
P , then the extended projection of W onto Ξ \ {x1, . . . , xN } corresponds to the notion
of port elimination [3] or variable hiding [66,67] through existential quantification, i.e.
∃x1, . . . , xN : P .

As an example of projection and extended projection, consider an assertion expressed
through equation y = x , where the assertion will be denoted as Wy=x for convenience.
Assertion Wy=x is shown in Fig. 3a where the x ′-axis can be the axis of any variable in
Ξ \ {x, y} and where only one single point in time is shown considering that y = x is
independent of time. The projection of Wy=x onto {x}, i.e. set of runs proj{x}

(
Wy=x

)
, is

shown in Fig. 3b. If each run ωΞ,T in proj{x}
(
Wy=x

)
is extended with all possible runs for

Ξ \{x} over T , the extended projection ofWy=x onto {x} is obtained. This assertion is shown
in Fig. 3c and is in fact the assertion Ω .

2.1.2 Variables constrained by assertions

As previously presented, assertions are sets of runs for universal set of variablesΞ . However,
as can be seen in previous examples, assertions can be expressed through constraints specified
over a subset ofΞ . For example, equation y = x , throughwhich the assertionWy=x shown in
Fig. 3a is expressed, is specified simply over set of variables {x, y}. For a given assertion, this
section introduces a concept that distinguishes such as set of variables from set of variables
Ξ .
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Wy=x

∀x′ ∈ Ξ \ {x, y}

y

x

(a)

proj{x}(Wy=x)

∀x′ ∈ Ξ \ {x, y}

y

x

(b)

̂proj{x}(Wy=x)

∀x′ ∈ Ξ \ {x, y}

y

x

(c)
Fig. 3 In a–c, an assertion Wy=x , its projection onto {x}, and its extended projection onto {x} are shown,
respectively

The concept of such a set is not presented in [3–5], but is, on the other hand, an essential
concept in the present paper. This difference between [3–5] and the present paper can be
explained by the fact that while each assertion consists of runs for universal set of variables
Ξ in the present paper, an assertion consists of runs for a set of variables local to the assertion
in [3–5]. Considering that the use-cases in [3–5] show the clear intent that the set of local
variables should be equal to the set of variables that are necessary and sufficient to express
the assertion, no distinction between these two sets is required in [3–5]. In contrast, when
considering assertions as defined in the present paper, while the runs of an assertion are for
Ξ , the set of variables that are necessary and sufficient to express the assertion will, in the
generic case, be a proper subset of Ξ , e.g. as exemplified with the assertion Wy=x . Thus,
to be able to directly refer to the subset of Ξ where this subset is necessary and sufficient
to express an assertion, the concept of the set of variables constrained by the assertion, is
introduced.

Definition 1 (Variables constrained by assertion) A variable x is constrained by an assertion
W if

p̂rojΞ\{x}(W) �= W.

Let XW denote the set of variables constrained byW. �
Notably, in accordance with Definition 1, to find the set XW, i.e. the set of variables

constrained by W, there is a need to iterate through each variable x ∈ Ξ to determine
whether or not it holds that p̂rojΞ\{x}(W) �= W. The following proposition provides an
alternative approach for finding XW without the need for iterating over Ξ .

Proposition 1 Given an assertion W, a set of variables X is equal to XW if and only if each
variable in X is constrained by W and p̂roj X (W) = W.

The proof of Proposition 1 is found in “Appendix A”.
In accordance with Proposition 1, there exists a unique set of variables X constrained by

W such that p̂roj X (W) = W. This unique set of variables is actually set of variables XW
constrained byW.

As an example of how to use Proposition 1, consider assertionWy=x . As shown in Fig. 3a,
c, the extended projection of Wy=x onto {x} is not equal to Wy=x , but rather a proper
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superset. The same holds for the extended projection of Wy=x onto {y}. This means that
both variables in set {x, y} are constrained by Wy=x . However, not only that, since equality

p̂roj {x,y}(Wy=x ) = Wy=x implies, in accordance with Proposition 1, that {x, y} is in fact
also the set of variables constrained byWy=x .

2.2 Elements

In this section, the concept of an element is introduced. Elements correspond to Heteroge-
neous Rich Components (HRCs) [4,68,69], as used in contract theory [3–5] of SPEEDS,
in the sense that an element can represent any part of a heterogeneous system in general,
such as a SW or physical part. However, an element can also serve as a connector, e.g. as
described in Modelica [20,21], or as a functional or logical design entity in general, e.g. as
a SysML block [27]. The term element is in the present paper chosen over the term compo-
nent due to the fact that the concept of elements also encompasses connectors, which are in
Modelica [20,21] and in theories such as [39], treated as separate entities from components.

Definition 2 (Element) An element E is an ordered pair (X,B) where:

(a) X is a non-empty set of variables, each called a port variable; and
(b) B is an assertion, called the behavior of E and where the set of variables constrained by

B is a subset of X . �

In the typical case, an element represents a real world entity where the port variables
represent tangible quantities of the entity from the perspective of an external observer to the
entity. The behavior of the element captures the static and dynamic constraints that the entity
imposes on the quantities, independent of its surroundings.

Definition 2 is of a general type, which means that conditions (a) and (b) hold regardless
of the domain, e.g. mechanical, SW, etc., that is considered. However, in some domains, e.g.
the SW domain, set of port variables X of an element (X,B) is typically partitioned into
inputs Xin and outputs Xout . In accordance with [3,5], the partitioning of X into inputs and
outputs enforces an additional condition on the behavior B, namely that B is receptive to
Xin , i.e. that p̂roj Xin

(B) is the set of all possible runs for Xin over each time-window in
{T |ωΞ,T ∈ B}.

As an illustrative example of an element, letEpot = (
X pot ,Bpot

)
be an element represent-

ing a potentiometer. The element and its port variables are shown in Fig. 4 as a rectangle filled
with gray and boxes on the edges of the rectangle, respectively. Port variables vre f , vbranch ,
and vgnd represent the reference, branch, and ground voltages, respectively. Furthermore, h
represents the position (0 − 100%) of the ’slider’ that moves over the resistor and branches
the circuit. Given a representation where it is assumed that the branched circuit is connected
to a resistance that is significantly larger than the resistance of the potentiometer, behavior
Bpot can be expressed through equation h = vbranch−vgnd

vre f −vgnd
.

2.3 Composition of elements

This section describes how a set of elements {E1, . . . , EN } can be combined into a sin-
gle element E—a composition of {E1, . . . , EN }. In accordance with [3–5], the underlying
principle is to combine individual behaviors using intersection where the sharing of port
variables between elements captures the interaction points between the elements. Sharing of
port variables is also used in e.g. [58].
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Fig. 4 An element
Epot = (

X pot ,Bpot
)
,

representing a potentiometer

Fig. 5 A set of elements representing a “Level Meter system” and its parts

Prior to presenting a formal definition of composition of a set of elements, the concept is
introduced by considering a set of elements representing the parts of a “Level Meter system”
(LM-system) as shown in Fig. 5. LM-system EL Msys consists of a tankEtank and an electric-
system EEsys , which further consists of potentiometer Epot shown in Fig. 4, a battery Ebat ,
and a level meter El Meter . The sharing of a port variable between elements is shown either
by a line connecting two or more boxes corresponding to the same port variable or by the
appearance of the same box on edges of several rectangles.

In the LM-system, slider h is connected to a “floater”, trailing level f in the tank. In
this way, potentiometer Epot is used as a level sensor to estimate the level in the tank. The
estimated level is presented by level meter El Meter where l denotes the presented level.

Behaviors Bbat , Bl Meter , and Btank of Ebat , El Meter , and Etank are expressed through
equations vre f − vgnd = 5V , l = vbranch−vgnd

5V , and h = f , respectively. Intersection
B′

L Msys = Bbat ∩ BLmeter ∩ Btank ∩ Bpot captures the combined constraints expressed
by the behaviors of Ebat , El Meter , Etank , and Epot . Assertion B′

L Msys is also the behavior of
an element (X ′

L Msys,B
′
L Msys), called the composition of {Ebat , El Meter , Etank, Epot }where

X ′
L Msys = Xbat ∪ X Lmeter ∪ Xtank ∪ X pot .
While B′

L Msys captures the combined constraints expressed by the behaviors of Ebat ,
El Meter , and Etank , and Epot , the set of port variables that is constrained by the assertion
B′

L Msys is a proper superset of set of port variables X L Msys = { f, l} of EL Msys as shown in
Fig. 5. In accordance with Definition 2, this means that B′

L Msys cannot be the behavior of
EL Msys . BehaviorBL Msys ofEL Msys is instead the extended projection ofB′

L Msys onto { f, l},
which, in accordance with relation (2), means thatBL Msys can be expressed through equation
l = f . The element EL Msys is also called the composition of {Ebat , El Meter , Etank, Epot }
onto X L Msys . Correspondingly, element EEsys is the composition of {Ebat , El Meter , Epot }
onto X Esys = {h, l}.
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Now that the concept of element composition has been introduced, the formal definition
follows.

Definition 3 (Composition of elements (onto a set of variables)) The composition of
a set of elements {(X1,B1), . . . , (X N ,BN )} onto a non-empty set X ⊆ ⋃N

i=1 Xi ,

is the element (X, p̂roj X (
⋂N

i=1 Bi )). In the case where X = ⋃N
i=1 Xi , the com-

position of {(X1,B1), . . . , (X N ,BN )} onto X , is simply called the composition of
{(X1,B1), . . . , (X N ,BN )}. �

In accordance with Definition 3 and as previously indicated, in the case where X =⋃N
i=1 Xi , the composition of {(X1,B1), . . . , (X N ,BN )} onto X , is simply called the com-

position of {(X1,B1), . . . , (X N ,BN )}. This case is in accordance with the definition of
composition of HRCs in [3–5].

In the case where X ⊂ ⋃N
i=1 Xi , Definition 3 combines composition as defined in [3–5]

with port elimination [3], also called variable hiding [66,67]. As shown in the example in
Fig. 5, this case allows representing hierarchical systems. For example, in [70], the over-
all concept of elements and how they compose were used for representing C-programs as
architecture models.

Given a set of elements E , the environment of an element E ∈ E , denoted EEnvE (E), is
the composition of E \ {E}. As an example of the environment of an element, given a subset
EL Msys = {Ebat , Etank, Epot , El Meter } of the elements shown in Fig. 5, the environment
EEnvEL Msys

(El Meter ) of El Meter is the composition of {Ebat , Etank, Epot }.

3 Conditions of contracts for separating responsibilities

Based on the concepts presented in Sect. 2, this section introduces the concept of a contract
containing assumptions and a guarantee, and also conditions that ensure that the guarantee
is fulfilled.

3.1 Contracts

As mentioned in Sect. 1, the notion of contracts was first introduced in [1] as a pair of pre
and post-conditions [2] to be used in formal specification of SW interfaces. In recent contract
theory [3–5], developed within SPEEDS [6], the use of contracts is extended from formal
specification of SW to serving as a central philosophy in systems engineering to support the
design of heterogeneous systems. One of the key challenges that triggered the extension of
contracts is the increasingly complex development environment of heterogeneous systems,
characterized by distributed OEM (Original Equipment Manufacturer)/supplier chains [3].

In the context of an OEM/supplier chain, in order for a global intended property to be
fulfilled by a composition of a set of elements, theOEMneeds to distribute the responsibilities
of fulfilling local properties between different elements that are to be integrated into the
composition. Considering that these elements are to be developed by different suppliers,
clearly defined interfaces and the separation of responsibilities between the different elements
are paramount in order to support seamless integration. A contract addresses such concerns
by assigning the responsibility that a certain property is fulfilled, to an element in the form of
a guarantee, given that certain assumptions are fulfilled—a responsibility of the environment
of the element.
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Fig. 6 A set of elements representing a “LevelMeter system” and its parts, and the set of variables constrained
by the assumption and the guarantee of a contract Cl Meter = ({Al Meter },Gl Meter , Xl Meter )

Although the discussion above focuses on the use of contracts formanaging the complexity
ofOEM/supplier chains, the discussion can be generalized and is equally valid for any context
where clear separations of responsibilities are desired.

A contract ({Ai }N
i=1 ,G, X) is a specification for an element E with a set of port variables

X , expressing the intent that the behavior of the element is such that the guarantee G is
fulfilled, given a set of elements containing E where its environment fulfills the assumptions
in {Ai }N

i=1.

Definition 4 (Contract) A contract C is a tuple (A ,G, X), where

(i) G is an assertion, called guarantee;
(ii) A is a set of assertions {Ai }N

i=1 where each Ai is called an assumption; and
(iii) X is a set of variables. �
For the sake of readability, let AA = ⋂N

j=1 Ai .
As an illustrative example of a contract, let ({Al Meter },Gl Meter , Xl Meter ) be a contract

Cl Meter where the set of port variables constrained by Al Meter and Gl Meter are connected
with dashed lines in Fig. 6. Guarantee Gl Meter , specified by equation l = f , expresses the
intent that the indicated level, displayed by the meter, corresponds to the level in the tank.
In the context of set of elements EL Msys = {Ebat , Etank, Epot , El Meter }, the responsibility
that guarantee Gl Meter is fulfilled, is assigned to El Meter , but only if the voltage measured
between vbranch and vgnd maps to a specific level in the tank, i.e. only if the environment

EEnvEL Msys
(El Meter ) fulfills the assumption Al Meter , specified by equation f = vbranch−vgnd

5V .

In general assume-guarantee theories [3,4,35,37–39,41–43,45,46,49–52,56–59] where
ports are explicit, contract Cl Meter is not supported since assumption Al Meter and guarantee
Gl Meter are not specified only over the set of ports ofEl Meter , i.e. over the voltage connections
vbranch and vgnd , and the indicated level l. In contrast to these theories, the present paper
supports specifying a contract for El Meter where both Al Meter and Gl Meter constrain port
variables that are not in the set of port variables of El Meter as exemplified in Fig. 6. Note that
the present paper also supports contracts that are limited to the set of ports of elements as in
other assume-guarantee theories.

Contract Cl Meter can for example be used in a scenario where an OEM develops El Meter

in-house while the development of elements Ebat , Epot , and Etank are outsourced to suppli-
ers. The responsibility that the overall intended functionality of the LM-system, as expressed
by Gl Meter , is fulfilled, is assigned to El Meter with the meaning that the OEM is not only
responsible for ensuring the development of El Meter , but also its successful integration with
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elements Ebat , Etank , and Epot into the composition of EL Msys that fulfills Gl Meter . A suc-
cessful integration of the elements can be ensured by theOEM, given that assumptionAl Meter

is fulfilled. This is a responsibility of environment EEnvEL Msys
(El Meter ) that is to be developed

by the suppliers.
Note that assumption Al Meter specifies a property that is intended to be fulfilled by

the environment, it does not specify a particular structure of the environment except that
f, vgnd , vbranch are ports in the environment. That is, this assumption, and also assumptions
of contracts in general, do not specify which or how many elements are in the environment,
which sets of ports they have, or the total set of ports that are in the environment.

In the previously introduced example, the fact that contract Cl Meter is not limited to the
set of ports of El Meter captures the intent of having the OEM being responsible over the
integration of the elements in EL Msys . However, in general, contracts that are not limited to
the set of ports of elements can be used to capture types of responsibility separation other
than that of integration. As another example of a type of responsibility separation that such
contracts can capture, consider the contract shown in Fig. 1. In this case, the fact that both
assumptions and guarantees constrain port variables not of SO F does not mean that the
developer of SO F is responsible for its integration with HW devices. Rather, this contract
captures the perspective that the SW developer is responsible for developing SO F with the
overall aim to fulfill RE Q; the surrounding HW is simply considered as an enabler to realize
this overall aim. An additional example of responsibility separation was also mentioned in
Sect. 1, namely that when contracts are used to separate responsibilities of fulfilling overall
safety properties.

3.2 Conditions on element and environment

Given a set of elements E and a contract (A ,G, X) for an element E = (X,B) ∈ E , this
section proposes the following respective conditions on element E and on its environment
EEnvE (E):

(i) AA ∩ B ⊆ G and AA ∩ G ⊆ B; and
(ii) BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅.

As will be shown in this section, these conditions ensure that the guarantee is fulfilled,
which can expressed as

BEnvE (E) ∩ B ⊆ G. (3)

In fact, not only that, but condition (i) on the element E actually ensures that relation
BEnvE (E) ∩ B ⊆ G holds for each set of elements where the environment of E is such
that condition (ii) holds. Furthermore, conditions (i) and (ii) also ensure that the trivial solu-
tion where BEnvE (E) ∩ B = ∅, is avoided. That is, these conditions actually ensure that the
guarantee is non-trivially fulfilled, i.e.

∅ �= BEnvE (E) ∩ B ⊆ G. (4)

As will be shown, conditionAA ∩G ⊆ B is needed to ensure relation (4) sinceBEnvE (E) ∩G
can simply consist of one run, and this run can possibly be any run in AA ∩ G.

In contrast to [3–5] where trivial solution BEnvE (E) ∩ B = ∅ is avoided only in the case
where set of ports X is partitioned into inputs and outputs, the conditions that will presented
in this section ensure that the trivial solution is avoided even when this is not the case. The
conditions that will be presented also hold when the assumptions and the guarantee are not
limited to constraining port variables in X ; a case that is prohibited in [3–5].
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In particular, as mentioned in Sect. 1, conditions (i) and (ii) support the case where an
element and its environment are developed in complete isolation and where the only infor-
mation is shared is a contract. In order to get a better understanding of this case, a scenario in
the context of an OEM/supplier chain as previously presented, is examined. In the scenario,
a contract C = (A ,G, X) is used to outsource the development of an element E = (X,B).
Specifically, the scenario can be described in three phases:

(I) a contract C is handed from the OEM to a supplier;
(II) the supplier develops an element E = (X,B) that is handed to the OEM; and
(III) the OEM integrates element E with a set of elements {Ei }N

i=1 into the composition of
E = {E} ∪ {Ei }N

i=1.

As expressed in phases (I–II), the development of the element E is guided only by the
information available in contract C, i.e. without access to the environment EEnvE (E) of E.
Therefore, in order for the composition of E in phase (III) to be such that relation (4) holds
with respect to C, conditions must be enforced on the element E such that relation (4) holds
not just for the set E , but rather for each set of elements containing E where the environment
is such that certain conditions hold. The conditions on the element is to be enforced by the
supplier, while the conditions on the environment is to be ensured by the OEM.

Aswill be shown in the following sections, conditions (i) and (ii) are, in fact, instantiations
of such conditions for the element and its environment, respectively. The subset of conditions
(i) and (ii) that ensure that relationBEnvE (E)∩B ⊆ G holds will first be derived in Sect. 3.2.1,
followed by the remaining subset that ensure that also relation ∅ �= BEnvE (E) ∩ B holds in
Sect. 3.2.2.

3.2.1 Conditions ensuring guarantee is fulfilled

As previously mentioned, in the context of E , the responsibility that the guarantee is fulfilled,
is assigned to E, given that the environment of E fulfills the assumptions. This means that it
must hold that

BEnvE (E) ⊆ AA . (5)

Supposing that relation (5) holds, it follows that relation (3) holds if

AA ∩ B ⊆ G. (6)

Note that if A = ∅, then relation (6) simplifies to B ⊆ G. Condition (6) on the element has
previously been identified in e.g. [3–5,33,34,64].

Relation (6) is a sufficient, but not necessary condition for relation (3) to hold considering
a specific set of elements where the environment is such that relation (5) holds. As expressed
in the following proposition, relation (6) is also a necessary condition in order for relation (3)
to hold for each set of elements where the environment is such that relation (5) holds.

Proposition 2 Consider a contract C = (A ,G, X) and an element E = (X,B). It holds
that AA ∩ B ⊆ G, if and only if BEnvE (E) ∩ B ⊆ G for each set of elements E � E where
BEnvE (E) ⊆ AA .

Proof Consider a contract C = (A ,G, X) and an element E = (X,B).
For the if-only case, assume that AA ∩ B ⊆ G. Consider an arbitrary set of elements

E � E where BEnvE (E) ⊆ AA . Relations AA ∩ B ⊆ G and BEnvE (E) ⊆ AA imply that
BEnvE (E) ∩B ⊆ G. Since E was chosen arbitrarily, it means that relation BEnvE (E) ∩B ⊆ G
also holds for each set of elements E � E where BEnvE (E) ⊆ AA .
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For the if case, assume that relation BEnvE (E) ∩ B ⊆ G holds for each set of elements
E � E where BEnvE (E) ⊆ AA . Assume that AA ∩ B � G, which will be shown to lead to
a contradiction. Assume a set of elements E � E where BEnvE (E) = AA , which means that
it follows that AA ∩ B = BEnvE (E) ∩ B ⊆ G. This contradicts the fact that AA ∩ B � G,
which means that it must rather hold that AA ∩ B ⊆ G, which concludes the proof. �

Proposition 2 expresses that relation (6) on the element E is a necessary and sufficient
condition in order to obtain an element and its environment in phase (III) such that relation (3)
holds in general, given that relation (5) on the environment holds. However, relation (3)
trivially holds if the behavior of the composition of the element and the environment is
empty, which would imply that relation (4) does not hold. Therefore, relation (4) does not
follow from relations (5) and (6), which means that additional conditions must be imposed
on the environment and on the element in order to ensure that the trivial solution is avoided.
These conditions will be examined in Sect. 3.2.2, which now follows.

3.2.2 Conditions ensuring non-triviality

This section presents contract conditions, additional to those established in Sect. 3.2.1, in
order to ensure that the guarantee of a contract is non-trivially fulfilled in a context such
as the considered OEM/supplier scenario. Notably, this context assumes that: (a) it cannot
be ensured that the set of ports of an element are partitioned into inputs and outputs; and
(b) the element and its environment are developed in complete isolation. In another context,
e.g. when inputs and outputs are well-defined, these additional conditions may not always
be applicable. Such other contexts, and the corresponding contract conditions that are then
applicable, will be discussed in Sect. 7.1. The rest of this section, as well as Sects. 4–6, will
focus only on contexts characterized by (a) and (b).

Consider a contract C = (A ,G, X) and an element E = (X,B), and assume a set of
elements E containing E such that its environment is such that BEnvE (E) ∩ G = ∅. Notably,
if the behavior of the composition of the element and its environment is non-empty, i.e. if
BEnvE (E) ∩ B �= ∅, then it must follow that BEnvE (E) ∩ B � G since none of the runs in
BEnvE (E) are in G. Hence, in order for relation (4) to hold, the environment must be such
that BEnvE (E) ∩ G �= ∅. This insight is summarized in the following proposition.

Proposition 3 Given a contract C = (A ,G, X) and a set of elements E containing an
element E = (X,B), it holds that BEnvE (E) ∩ G �= ∅ if ∅ �= BEnvE (E) ∩ B ⊆ G.

Proof Consider a contract C = (A ,G, X) and a set of elements E containing an element
E = (X,B). Assume that ∅ �= BEnvE (E) ∩ B ⊆ G. Intersecting both sides of this relation
with BEnvE (E), yields ∅ �= BEnvE (E) ∩ BEnvE (E) ∩ B ⊆ BEnvE (E) ∩ G. This implies that
BEnvE (E) ∩ G �= ∅. �

Now that necessary condition BEnvE (E) ∩ G �= ∅ on the environment of E has been
identified in order for relation (4) to hold, a complementary sufficient condition on the
element E is examined in order to ensure that relation (4) holds.

Consider that relationAA ∩B ⊆ G on the elementE holds. As shown in the Venn diagram
in Fig. 7a, if BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅, it is possible that relation (4) holds.
However, as shown in Fig. 7b, this is not true for all cases. In fact, since BEnvE (E) ∩ G can
simply consist of one run, and this run can possibly be any run in AA ∩G, in order to ensure
that BEnvE (E) ∩ B �= ∅, it must hold that AA ∩ G ⊆ B as shown in Fig. 7c.

These insights are now summarized in the following theorem.
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(a) (b) (c)
Fig. 7 In a, a Venn diagram shows a case where ∅ �= BEnvE (E) ∩ B ⊆ G holds and b shows a case where
this does not hold. In c, a Venn diagram is shown where ∅ �= BEnvE (E) ∩ B ⊆ G for each set E where
BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅

Theorem 1 Given a contract C = (A ,G, X) and an element E = (X,B) where AA ∩B ⊆
G, it holds that

AA ∩ G ⊆ B,

if and only if ∅ �= B ∩ BEnvE (E) ⊆ G for each set of elements E containing E where
BEnvE (E) ∩ G �= ∅ and BEnvE (E) ⊆ AA .

Now follows a clarification of Theorem 1 using quantifiers. Given a contract C =
(A ,G, X) and an element E = (X,B) where AA ∩ B ⊆ G:

AA ∩ G ⊆ B ⇐⇒
(∀E � E : ((BEnvE (E) ∩ G �= ∅ ∧ BEnvE (E) ⊆ AA ) �⇒ ∅ �= B ∩ BEnvE (E) ⊆ G)).

Proof Consider a contractC = (A ,G, X) and an elementE = (X,B) such thatAA ∩B ⊆ G.
For the if-only part, assume that AA ∩ G ⊆ B. Furthermore, consider a set of elements

E containing E where BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅. Relations AA ∩ G ⊆ B and
BEnvE (E) ⊆ AA imply that BEnvE (E) ∩ G ⊆ B. This and the fact that BEnvE (E) ∩ G �= ∅
imply that ∅ �= BEnvE (E) ∩ G ⊆ B. Intersecting both sides of this relation with BEnvE (E)

yields ∅ �= BEnvE (E) ∩BEnvE (E) ∩G ⊆ BEnvE (E) ∩B. This implies that BEnvA (E) ∩B �= ∅.
This and since relations AA ∩B ⊆ G and BEnvE (E) ⊆ AA imply that BEnvE (E) ∩B ⊆ G, it
can be concluded that ∅ �= B ∩ BEnvE (E) ⊆ G. Considering that E was chosen arbitrarily, it
follows that relation ∅ �= B∩BEnvE (E) ⊆ G also holds for each set of elements E containing
E where BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅. This completes the if-only part of the
proof.

For the if part, assume that for each set of elements E containingEwhereBEnvE (E) ⊆ AA

and BEnvE (E) ∩ G �= ∅, it follows that ∅ �= B ∩ BEnvE (E) ⊆ G. Assume that AA ∩ G � B,
which will be shown to lead to a contradiction. This means that there exists a run ω such
that ω ∈ AA ∩ G and ω /∈ B. Furthermore, assume that there exists a set of elements E
containing E where BEnvE (E) = {ω}. This and the fact that ω ∈ AA ∩ G imply that both
relations BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅ hold. As was assumed, this means that it
follows that ∅ �= BEnvE (E) ∩ B ⊆ G; however, this is a contradiction since ω /∈ B implies
that BEnvE (E) ∩B = ∅. It follows that AA ∩G � B cannot be true, which means that it must
hold that AA ∩ G ⊆ B, which concludes the proof. �

Given that relation AA ∩B ⊆ G on the element E holds, Theorem 1 expresses necessary
and sufficient condition AA ∩G ⊆ B on element E such that, for each set of elements E � E

where BEnvE (E) ⊆ AA and BEnvE (E) ∩G �= ∅, the composition of E non-trivially fulfillsG.
The condition expressed in Theorem 1 holds regardless of the considered domain, e.g. SW,
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electrical, mechanical, etc, and does not require the set of port variables of the element to be
partitioned into inputs and outputs.

As a technical remark, given that conditions AA ∩ B ⊆ G, AA ∩ G ⊆ B, and G ∩
BEnvE (E) �= ∅ hold, it can be noted that condition BEnvE (E) ⊆ AA can actually be relaxed
to G ∩ BEnvE (E) ⊆ AA . However, this relaxed condition can actually always be embedded
in condition BEnvE (E) ⊆ AA . This can be understood by considering that relaxed condition
G ∩ BEnvE (E) ⊆ AA can be rewritten as BEnvE (E) ⊆ AA ∪ G where G is the complement
of G. This means that while condition G ∩ BEnvE (E) ⊆ AA is indeed more relaxed than
BEnvE (E) ⊆ AA , the two conditions are, in fact, equally expressive.

Theorem 1 quantifies over sets of elements, and, thus, also over various environments of
elementE. To clarify the respective conditions onE and its environmentEEnvE (E) in a specific
set of elements, the following corollary simplifies Theorem 1 by removing the quantification
over sets of elements.

Corollary 1 Given a contract C = (A ,G, X) and a set of elements E containing an element
E = (X,B), it holds that ∅ �= B ∩ BEnvE (E) ⊆ G if both the following conditions hold:

(i) element E is such that

AA ∩ B ⊆ G, and (7)

AA ∩ G ⊆ B; (8)

ii environment EEnvE (E) of E is such that

BEnvE (E) ⊆ AA , and (9)

BEnvE (E) ∩ G �= ∅. (10)

Proof Trivially follows from Theorem 1. �
In the context of the scenario presented in the beginning of this section, Corollary 1

specifies condition (i) that the supplier needs to meet and condition (ii) that the OEM needs
to meet in order to ensure that the integration of E with the elements in {Ei }N

i=1 in phase (III)
results in that the guarantee is non-trivially fulfilled by the composition of {E} ∪ {Ei }N

i=1, i.e.
that relation (4) holds.

As a conclusion to this section, it is examinedwhether elementEl Meter and its environment
EEnvEL Msys

(El Meter ) in the context of the set of elementsEL Msys = {Ebat , Etank, Epot , El Meter }
shown in Fig. 5 are such that respective conditions (i) and (ii) of Corollary 1 holdswith respect
to the contract Cl Meter shown in Fig. 6. As expressed in condition (i) of Corollary 1, it must
hold that

Al Meter ∩ Bl Meter ⊆ Gl Meter , and (11)

Al Meter ∩ Gl Meter ⊆ Bl Meter . (12)

Furthermore, as expressed in condition (ii) of Corollary 1, it must hold that

BEnvEL Msys
(El Meter ) ⊆ Al Meter , and (13)

BEnvEL Msys
(El Meter ) ∩ Gl Meter �= ∅. (14)

By applying the operation of intersection, Al Meter ∩ BLmeter yields an assertion specified
by equations f = (vbranch − vgnd)/5V and l = (vbranch − vgnd)/5V . Due to the fact
that equation f = l, which specifies Gl Meter , can be obtained by combining the equations
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specifying Al Meter ∩ BLmeter , relation (11) holds. Furthermore, since Al Meter ∩ Gl Meter is
an assertion specified by equations l = f and f = (vbranch − vgnd)/5V , which can be
combined into equation l = (vbranch − vgnd)/5V that specifies Bl Meter , relation (12) also
holds.

In accordance with Sect. 2.3, the behavior of EnvA L Msys (El Meter ) is the intersection of
the behaviors of Etank , EEsys , and Epot , which are specified by equations f = h, h =
(vbranch − vgnd)/(vbranch − vgnd), and vbranch − vgnd = 5V . Due to the fact that equation
f = (vbranch − vgnd)/5V can be obtained by combining these equations, relation (13)
holds. Furthermore, due to the fact that BEnvEL Msys

(El Meter ) does not constrain l, it holds that

BEnvEL Msys
(El Meter ) ∩ Gl Meter is non-empty, i.e. relation (14) also holds.

Considering that relations (11)–(14) hold, Corollary 1 implies that guarantee Gl Meter is
non-trivially fulfilled by the composition of EL Msys .

4 Scoping conditions for specifying contracts

Section 3 presented conditions on an element and its environment where these conditions
ensure that the guarantee of a given contract is non-trivially fulfilled. Previous general assume-
guarantee theories [3,4,35,37–39,41–43,45,46,49–52,56–59] that explicitly consider ports,
do not allow guarantees and assumptions to be specified over ports that are not in the set
of ports of an element. This means that the present paper is strictly more expressive than
previous assume-guarantee theories with respect to how a contract can be specified. However,
the increased expressiveness is not unlimited since there are necessary restrictions on the set
of port variables constrained by the assumptions and the guarantee of a contract in order
for an element and its environment to be such that conditions (i) and (ii) of Corollary 1
hold. Therefore, to facilitate the specification of contracts in practice, this section introduces
conditions, called scoping conditions, which ensure that these restrictions are not violated
without limiting expressiveness.

In order to introduce and motivate these scoping conditions, a definition and two propo-
sitions, will first be presented. The definition, which now follows, characterizes a necessary
condition in order for conditions (i) and (ii) of Corollary 1 to hold.

Definition 5 An assertionW restricts a variable x ifW constrains x and there does not exist
an assertionW′ where x /∈ XW′ and ∅ �= W′ ⊆ W. �

In accordance with Definition 5, if an assertion W restricts x , then it is necessary for an
assertion W′ to constrain x in order to non-trivially fulfill W.

As a first example, guaranteeGEsys , specified through equation l = f , restricts both l and
f . Consider an architecture containing an element E where B∩BEnvE (E) does not constrain
both l and f . In accordancewithDefinition 5, it does not hold that∅ �= B∩BEnvE (E) ⊆ GEsys .
Formulated differently, the fact that GEsys restricts a port variable that is not constrained by
B ∩ BEnvE (E) means conditions (i) and (ii) of Corollary 1 will not both hold for E and
EnvE (E), respectively.

In the first example, the port variables constrained by GEsys are also the port variables it
restricts; however, in general, an assertion can constrain a port variable without restricting it.
As a second example, consider an assertion Wx>0⇒y=0 expressed through logical formula
x > 0 ⇒ y = 0. The assertionWx>0⇒y=0 constrains y, but it does not restrict it since in the
case of e.g. an assertion Wx=0 expressed through equation x = 0, it does indeed hold that
∅ �= Wx=0 ⊆ Wx>0⇒y=0 despite the fact thatWx=0 does not constrain y.
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As shown in the second example, under the conditions that an assertion W constrains a
variable x , but does not restrict it, then it is possible that there exists a case where another
assertion W′′ does not constrain x , but where it still holds that ∅ �= W′′ ⊆ W. As will be
shown in the following proposition, under such conditions, it holds that there exists another
assertion W′ that does not constrain x , but where ∅ �= W′′ ⊆ W′ holds regardless of the
specific runs that are inW′′. This means that if the intent is thatW is to specify an assertion
that is to non-trivially fulfill W and not constrain x , then it is possible to replace W with an
assertion W′ that does not constrain x , but that still specifies the exact same assertions.

Proposition 4 Given a set of variables X and an assertion W, there exists an assertion W′
where XW′ ⊆ X such that for each assertion W′′ where XW′′ ⊆ X:

∅ �= W′′ ⊆ W′ if and only if ∅ �= W′′ ⊆ W.

Lemma 1 Given two assertions W and W′ where W ∪ W′ �= ∅, it holds that XW∪W′ ⊆
XW ∪ XW′ .

The proof of Lemma 1 is found in “Appendix A”. The proof of Proposition 4 follows.

Proof Assume thatW′ is the union of each assertionW′′ where XW′′ ⊆ X and ∅ �= W′′ ⊆ W.
The rest of the proof trivially follows from Lemma 1. �
Note that in order for there to exist an assertion W′′ where XW′′ ⊆ X and ∅ �= W′′ ⊆ W, in
accordance with Definition 5, it is necessary thatW does not restrict variables that are not in
X .

Given previously presented assertion Wx>0⇒y=0 and set {x}. In accordance with Propo-
sition 4, there exists an assertionW′ where XW′ ⊆ {x} such that for each assertionW′′ where
XW′′ ⊆ {x}, it holds that ∅ �= W′′ ⊆ Wx>0⇒y=0 if and only if ∅ �= W′′ ⊆ W′. For example,
W′ can be expressed through the inequality x ≤ 0.

Proposition 5 Given two assertions W and W′ where W ∩W′ �= ∅, it holds that XW∩W′ ⊆
XW ∪ XW′ .

The proof of Proposition 5 is found in “Appendix A”.
Definition 5 and Propositions 4 and 5 will now be applied on two examples to motivate

the need and the basis for the scoping rules that will be proposed for specifying contracts.
In the following two examples, the considered use case is to establish that the guarantee of
a contract is non-trivially fulfilled in a set of elements containing an element with a set of
port variables X Esys and where Xtank is the set of port variables of the environment of this
element.

What will be shown in the two examples is that, regardless of the specific runs in the
assumptions and guarantee of a contract, it is indeed necessary that the assumptions and
guarantee do not restrict variables in X Esys ∪ Xtank in order for condition (i) and (ii) of
Corollary 1 to hold. Furthermore, it will also be shown that if the assumptions and guarantee
constrain port variables in X Esys ∪ Xtank without restricting them, then the assumptions and
guarantee can be reformulated to constrain a subset of X Esys ∪ Xtank and still specify the
exact same element and environment behaviors constraining a subset of X Esys and Xtank ,
respectively.

Example 1a Consider a contract C′
Esys = ({A′

Esys},G′
Esys, X Esys) as shown in Fig. 8a.

Assume that conditions (i) and (ii) of Corollary 1 hold respectively for EEsys and Etank

with respect to C′
Esys . From condition (ii), it follows that ∅ �= Btank ⊆ A′

Esys . As shown
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(a) (b)
Fig. 8 In a and b, two contracts ({A′

Esys },G′
Esys , X Esys ) and ({A′′

Esys },G′′
Esys , X Esys ) are shown where

none of them are scope-compliant with respect to Xtank

in Fig. 8a, port variable vgnd is constrained by A′
Esys , but vgnd is not a port variable of

Etank , i.e. the environment of EEsys . In accordance with Definition 2, this means that vgnd is
not constrained by Btank . This means, in accordance with Definition 5 and considering that
∅ �= Btank ⊆ A′

Esys , that A
′
Esys does not restrict vgnd . That is, the fact that condition (ii)

holds, implies that A′
Esys does not restrict vgnd .

Furthermore, considering Xtank as given, in accordance with Proposition 4, there exists an
assertion Anew

Esys that constrains a subset of Xtank and where, for each element (Xtank,B′
tank),

it holds that ∅ �= B′
tank ⊆ A′

Esys if and only if ∅ �= B′
tank ⊆ Anew

Esys .
This example shows that it is necessary that assumption AA does not restrict any port

variable that is not in X EnvE (E). Furthermore, if AA does constrain a port variable x /∈
X EnvE (E) without restricting it, then it is possible to replace A′

Esys with an assertion Anew
Esys

that does not constrain x , but that still specifies the exact same behaviors constraining a subset
of Xtank . �

Example 1b In Fig. 8a, a contract C′′
Esys = ({A′′

Esys},G′′
Esys, X Esys) is shown.

Similar to Example 1a, assume that conditions (i) and (ii) of Corollary 1 hold respectively
for EEsys and Etank with respect to C′′

Esys . Conditions (i) and (ii) imply that ∅ �= A′′
Esys ∩

BEsys ⊆ G′′
Esys . As shown in Fig. 8b, the port variable vgnd is constrained byG′′

Esys , but vgnd

is not a port variable of EEsys . This and considering that vgnd /∈ XA′′
Esys

imply, in accordance

with Definition 2 and Proposition 5, that vgnd is not constrained byA′′
Esys ∩BEsys . It follows,

in accordancewith Definition 5 and considering that ∅ �= A′′
Esys ∩BEsys ⊆ G′′

Esys , thatG
′′
Esys

does not restrict vgnd . That is, the fact that condition (i) and (ii) hold implies thatG′′
Esys does

not restrict vgnd .
In addition, considering set XA′′

Esys
∪ X Esys as given, in accordance with Propositions 4

and 5, there exists an assertion Gnew
Esys that constrains a subset of XA′′

Esys
∪ X Esys and where,

for each element (X Esys,B′
Esys), it holds that ∅ �= A′′

Esys ∩ B′
Esys ⊆ G′′

Esys if and only if
∅ �= A′′

Esys ∩ B′
Esys ⊆ Gnew

Esys . That is, similar to Example 1a, it is possible to replace G′′
Esys

with an assertion Gnew
Esys that does not constrain vgnd , but that still specifies the exact same

behaviors constraining a subset of XA′′
Esys

∪ X Esys . �

Consider a contract (A ,G, X) and a set of port variables X EnvE (E). As expressed in Exam-
ple 1a, in order for condition (ii) of Corollary 1 to hold for an element (X EnvE (E),BEnvE (E)),
it is necessary that assumptions AA do not restrict any port variable that is not in X EnvE (E).
Similarly, as expressed in Example 1b, in order for condition (i) of Corollary 1 to hold for

123



Form Methods Syst Des (2018) 52:147–192 169

an element (X,B), it is necessary that guarantee G does not restrict any port variable that is
not in X ∪ XAA

.
Furthermore, consider that AA and G constrain port variables that are not in respective

sets X EnvE (E) and X ∪ XAA
, but where AA and G do not restrict these port variables. As

indicated in Examples 1a and 1b, in such a case, it is in fact redundant to constrain such
port variables. That is, these examples indicate that AA and G could be reformulated to not
constrain such port variables and yet specify the same element and environment behavior.

These indications are formalized in the following theorem.

Theorem 2 Given a contract (A ,G, X)and set of variables X EnvE (E), there exists a contract
(A ′,G′, X) where:

(a) XAA ′ ⊆ X EnvE (E); and
(b) XG′ ⊆ X EnvE (E) ∪ X

such that for each set of elements containing an element (X,B) and where pair
(X EnvE (E),BEnvE (E)) is the environment of (X,B):

(i’) AA ′ ∩ B ⊆ G′ and AA ′ ∩ G′ ⊆ B, and
(ii’) BEnvE (E) ⊆ AA ′ and BEnvE (E) ∩ G′ �= ∅,

if and only if

(i) AA ∩ B ⊆ G and AA ∩ G ⊆ B, and
(ii) BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅.

The proof of Theorem 2 is found in “Appendix A”.
Consider the task of specifying a contract (A ,G, X) with the intent that condition (i) and

(ii) are to hold respectively for an element (X,B) and its environment (X EnvE (E),BEnvE (E))

in a set of elements. As expressed in Theorem 2, for such a task, it is sufficient to only allow
contracts to be specified in accordance with conditions (a) and (b); that is, no expressiveness
is lost by only allowing such contracts. In the following, given a contract C = (A ,G, X)

and a set of variables X EnvE (E), conditions (a) and (b) will be called scoping conditions for
C and X EnvE (E).

Suppose that either or both of scoping conditions (a) and (b) are violated for a given
contract C = (A ,G, X) and a set of variables X EnvE (E). For example, consider that
XAA ′ \ X EnvE (E) = {x}. Notably, either AA ′ restricts x or it constrains it without restricting
it. As previously mentioned and in accordance with Definition 5, the former case ensures
that conditions (i) and (ii) of Corollary 1 cannot hold. Considering the latter case, in accor-
dance with Theorem 2, constraining x is indeed redundant. Thus, the scoping conditions of
Theorem 2 constitute as checks that either detect the violation of conditions (i) and (ii) or
redundantly constrained port variables.

Note that in accordancewith Sect. 2.1.2, the set of variables constrained by an assertion can
only be derived from the runs that the assertion contains. However, as indicated in Sect. 2.1, in
practice, an assertion would typically be expressed through a constraint, explicitly specified
over a set of variables, e.g. as the assertion Wy=x shown in Fig. 3a. Assuming the generic
case when the set of variables over which the constraint is specified is equal to the set of
variables constrained by the assertion, the fact that scoping conditions (a) and (b) hold for
a contract C = (A ,G, X) and a set of port variables X EnvE (E), can actually be established
by considering only X , X EnvE (E), and the sets of port variables over which assumptions AA

and guarantee G are specified.
To illustrate the use of conditions (a) and (b) of Theorem 2, consider again Examples 1a

and 1b shown in Fig. 8. Scoping condition (a) is violated for contract C′
Esys and Xtank due
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to the fact that XAEsys � Xtank . Furthermore, considering contract C′′
Esys and set of port

variables Xtank , scoping condition (b) does not hold since XG′′
Esys

� Xtank ∪ X Esys . Thus,
checking whether scoping conditions (a) and (b) hold or not, can be done without explicitly
considering the runs that are in these assumptions and guarantees. As previously mentioned,
the violation of the scoping conditions means that either conditions (i) and (ii) of Corollary 1
are violated or that more port variables are constrained than what is necessary.

5 Contract properties consistency and compatibility

Section 4 described necessary restrictions on the sets of port variables constrained by assump-
tions and the guarantee of a contract, in order for conditions (i) and (ii) of Corollary 1 to
hold. In contrast to Sect. 4, this section presents sufficient and necessary conditions for the
existence of a set of elements where an element and its environment is such that conditions
(i) and (ii) of Corollary 1 holds with respect to the contract. If such a set of elements exists,
then the contract is said to be consistent and compatible.

In order to get a better understanding of when the properties consistency and compatibility
are relevant, the scenario presented in Sect. 3.2 is examined. Considering phase (I) of the
scenario, the expectation of the OEM when handing over contract C = (A ,G, X) to the
supplier, is that the supplier will deliver an element in phase (II) such that condition (i) of
Corollary 1 holds with respect to C. However, in order for the supplier to be able to meet this
expectation from the OEM, contract C needs to be such that there actually exists an element
(X,B) that is such that condition (i) of Corollary 1 holds. If such an element exists, the
contract C will be referred to as a consistent contract.

Furthermore, in phase (III), the OEM also has the intent of integrating elementE delivered
by the supplier with a set of elements {Ei }N

i=1 such that the composition of {E} ∪ {Ei }N
i=1

non-trivially fulfills the guarantee G. However, in order for this to be possible, there needs
to exists at least one set of elements containing E where the environment of the element is
such that condition (ii) of Corollary 1 holds with respect to C. If such a set of elements exists,
then the contract C will be referred to as a compatible contract.

Now that the concepts of consistency and compatibility have been introduced in the
context of a scenario, formal definitions follow. Considering that the definitions quantify
over elements and set of elements, complementary sufficient and necessary conditions that
can be established to hold on the contract alone, will also be presented.

Definition 6 (Consistent contract) A contract (A ,G, X) is consistent if there exists an
element E = (X,B) such that

(a) AA ∩ B ⊆ G, and
(b) AA ∩ G ⊆ B . �

Definition 6 corresponds to an instantiation of the abstract definition of consistency in
the meta theory of contracts in [33] using condition (i) of Corollary 1. Definition 6 is also
closely related to definitions of consistency and compatibility in [3,5], and to the definition of
realizability in [71], butwhereDefinition 6, in contrast to the definitions in [3,5,71], considers
a context where contract (A ,G, X) is not necessarily limited to set of port variables X and
where X does not need to be partitioned into inputs and outputs.

A sufficient and necessary condition of Definition 6 now follows.
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Theorem 3 A contract (A ,G, X) is consistent if and only if

AA ∩ p̂roj X (AA ∩ G) ⊆ G.

Lemma 2 Given two assertions W and W′, and a set of variables X, it holds that
p̂roj X (W) ⊆ p̂roj X (W′), if W ⊆ W′.

The proof of Lemma 2 is found in “Appendix A”. The proof of Theorem 3 now follows.

Proof Consider a contract C = (A ,G, X).
For the only-if part, assume that C is consistent. In accordance with Definition 6, this

means that there exists an element E = (X,B) such that AA ∩ B ⊆ G and AA ∩ G ⊆ B.
In accordance with Lemma 2, this means that p̂roj X (AA ∩ G) ⊆ p̂roj X (B). This and the
fact that p̂roj X (B) = B in accordance with Definition 2 and Proposition 1, it follows that
p̂roj X (AA ∩G) ⊆ B. This and relationAA ∩B ⊆ G imply thatAA ∩ p̂roj X (AA ∩G) ⊆ G.

For the if part, assume that relation AA ∩ p̂roj X (AA ∩ G) ⊆ G holds. Assume that
E = (X,B) is an element where B = p̂roj X (AA ∩ G), which means that AA ∩ B ⊆ G. In
accordance with relations (1) and (2), it holds that AA ∩ G ⊆ p̂roj X (AA ∩ G). This and
considering that B = p̂roj X (AA ∩G) imply that AA ∩G ⊆ B, which concludes the proof.

�
In contrast to Definition 6, Theorem 3 supports a way of establishing whether a contract

is consistent or not without the need for iterating through each element with a set of port
variables X in order to determine if there exists an element E = (X,B) that is such that
condition (i) of Corollary 1 holds with respect to C.

Definition 7 (Compatible contract) A contract (A ,G, X) is compatible if there exists an
element E = (X,B) and a set of elements E containing E, such that

(a) BEnvE (E) ∩ G �= ∅, and
(b) BEnvE (E) ⊆ AA . �

Definition 7 corresponds to an instantiation of the abstract definition of compatibility in
the meta theory of contracts in [33] using condition (ii) of Corollary 1. Definition 7 is also
closely related to the definitions of compatibility in [3,5]. However, in contrast to [3,5],
Definition 7 considers a context where the contract (A ,G, X) is not necessarily limited to
set of port variables X and where X does not need to be partitioned into inputs and outputs.

A sufficient and necessary condition of compatibility now follows.

Theorem 4 A contract (A ,G, X) is compatible if and only if AA ∩ G �= ∅.

Proof Consider a contract (A ,G, X).
For the if part, assume that AA ∩ G �= ∅. This implies that there exists at least one run

ω in AA that is also in AA ∩ G. Assume that E0 is a set of elements containing an element
E = (X,B) such that BEnvE0 (E) = {ω}. This implies that there exists a set of elements
containing an element E = (X,B), such that relations (i) and (ii) of Definition 7 hold.

For the if-only part, assume that (A ,G, X) is compatible. In accordancewithDefinition 7,
this means that there exists a set of elements E containing an element E = (X,B) such that
BEnvE (E) ∩ G �= ∅ and BEnvE (E) ⊆ AA . It trivially follows that AA ∩ G �= ∅, which
completes the proof. �
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In contrast to Definition 7, Theorem 4 supports a way of establishing whether a contract
C = (A ,G) is compatible or not, without the need for iterating through each set of elements
containing an element with a set of port variables X in order to determine if there exists a set
of elements where the environment of an element E = (X,B) is such that condition (ii) of
Corollary 1 holds.

As a conclusion to this section, a scenario is examined where a supplier wants to outsource
the development of a level meter by the use of contract Cl Meter shown in Fig. 6. In order for
the supplier and the client to complete phases (I–III) in the scenario described in Sect. 3.2
such that relation (4) holds, contract Cl Meter must be consistent and compatible.

In order for this to be the case, Theorems 3 and 4 express that it is necessary and sufficient
that:

Al Meter ∩ Gl Meter �= ∅; and (15)

Al Meter ∩ p̂roj Xl Meter
(Al Meter ∩ Gl Meter ) ⊆ Gl Meter . (16)

Considering that Al Meter ∩ Gl Meter is an assertion specified by equations f = vbranch−vgnd
5

and l = f , which obviously have intersecting solutions, relation (15) holds. The
extended projection of this assertion onto set of variables Xl Meter = {l, vbranch, vgnd}, i.e.
p̂roj Xl Meter

(Al Meter ∩ Gl Meter ), is specified by equation l = vbranch−vgnd
5 . The intersection

of Al Meter and assertion p̂roj X (Al Meter ∩ Gl Meter ) yields an assertion specified by equa-
tions f = vbranch−vgnd

5 and l = vbranch−vgnd
5 , which can be combined into equation l = f .

This means that relation (16) holds. Therefore, it can be concluded that contract Cl Meter is
consistent and compatible and is, thus, an appropriate specification to be used for outsourced
development.

6 Hierarchical structuring of contracts

Consider a pair (C, {Ci }N
i=1), characterizing a two-level contract hierarchy such that C =

(A ,G, X) is a contract at the first level and {Ci = (Ai ,Gi , Xi )}N
i=1 is a set of contracts

where X ⊆ ⋃N
i=1 Xi , at the second level. This section establishes the following property of

two level contract hierarchy (C, {Ci }N
i=1): for each set of elements {(Xi ,Bi )}N

i=1 where each
element (Xi ,Bi ) is such that condition (i) of Corollary 1 holds with respect to (Ai ,Gi , Xi ),
the composition (X,B) of {(Xi ,Bi )}N

i=1 onto X is such that condition (i) of Corollary 1 holds
with respect to C. If this property holds, then two-level contract hierarchy (C, {Ci }N

i=1) is said
to be proper. Establishing that a contract hierarchy of an arbitrary number of levels is proper,
amounts to establishing that each pair of adjoining levels in the contract hierarchy is proper.

Definition 8 (Proper contract hierarchy) Given a contract C = (A ,G, X) and a set of
contracts {Ci = (Ai ,Gi , Xi )}N

i=1 where X ⊆ ⋃N
i=1 Xi , the two-level contract hierarchy

(C, {Ci }N
i=1) is proper if, for each set of elements {(Xi ,Bi )}N

i=1:

(∀i : AA i ∩ Bi ⊆ Gi and AA i ∩ Gi ⊆ Bi ) �⇒ AA ∩ B ⊆ G and AA ∩ G ⊆ B,

where (X,B) is the composition of {(Xi ,Bi )}N
i=1 onto X . �

Definition 8 is in accordance with the general principle of compositionality [31,32] since
the fact that element (X,B) is such that relations AA ∩B ⊆ G and AA ∩G ⊆ B hold can be
inferred from establishing that each element (Xi ,Bi ) is such that relations AA i ∩ Bi ⊆ Gi
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and AA i ∩Gi ⊆ Bi hold. The compositional approach of indirectly establishing that (X,B)

is such that condition (i) of Corollary 1 holds with respect to C is needed when a direct
approach is not feasible due to e.g. the complexity of (X,B).

Despite considering dissimilar conditions than those presented in Corollary 1 in the
present paper, Definition 8 corresponds, in essence, to the definitions of dominance in [39,72]
where [72] offers a minor extension to the definitions in [35,44]. However, in contrast to [72]
where ports are not considered and to [39] where guarantees must be limited to the set of
ports of a component, Definition 8 considers a context where port variables are explicit, but
where contracts are not necessarily limited to the sets of port variables of elements.

A special case ofDefinition 8 iswhen a contract hierarchy is of the form ((A ,G, X), {(A ′,
G′, X)}). In accordance with Definitions 3 and 8, in order for such a contract hierarchy to
be proper, it means that condition (i) of Corollary 1 must hold with respect to (A ,G, X)

for each element (B, X) that is such that condition (i) of Corollary 1 holds with respect to
(A ′,G′, X). Notably, this special case of Definition 8 corresponds to an instantiation of the
abstract definition of refinement in the meta theory of contracts in [33] using condition (i) of
Corollary 1. The notion of refinement, defined as a special case of of Definition 8, is further
compared to refinement as defined in other contract theories in Sect. 7.

In order to provide further understanding of when Definition 8 is relevant, a scenario is
presented. The scenario is in the context of an OEM/supplier chain as described in Sect. 3,
but the principles are equally valid for any design context where clear separations of respon-
sibilities are desired, also within a single company. Specifically, the scenario consists of three
phases:

(I’) the OEM establishes a two-level contract hierarchy (C = (A ,G, X), {Ci }N
i=1) where

each contract Ci = (Ai ,Gi , Xi ) is handed from the OEM to a supplier and where
X ⊆ ⋃N

i=1 Xi ;
(II’) each supplier develops an element Ei = (Xi ,Bi ) such that condition (i) of Corollary 1

holds with respect to Ci ; and
(III’) the OEM integrates the set of elements {Ei }N

i=1 into an element E = (X,B) that is the
composition of {Ei }N

i=1 onto X and is such that condition (i) of Corollary 1 holds with
respect to C.

In order to enable an integration of the set of elements {Ei }N
i=1 into element E in phase

(III’), the fact that element E is such that condition (i) of Corollary 1 holds with respect to C
needs to follow from the completion of phase (II’). In order for this to be the case, in phase
(I’), two-level contract hierarchy (C, {Ci }N

i=1) needs to proper.
In order to find a two-level contract hierarchy (C, {Ci }N

i=1) that is proper, a graph, called
a composition structure, is introduced in Sect. 6.1. Based on a composition structure, a
theorem that expresses sufficient conditions for a contract hierarchy to be proper is presented
in Sect. 6.2. Despite considering dissimilar formalisms than the present paper, the sufficient
conditions that will be presented for a contract hierarchy to be proper corresponds, in essence,
to the compositional proof step [73] in assume-guarantee theories such as [34,47,51], and
also to sufficient conditions of dominance in [39]. However, in contrast to [34,39,47,51], the
sufficient conditions in Sect. 6.2 are based on the concept of a graph, or more specifically, a
composition structure.

The proposed graph-based approach supports the approach of establishing that any two-
level contract (C, {Ci }N

i=1) is proper directly. Another alternative, but more indirect, way of
establishing that (C, {Ci }N

i=1) is proper is to: first, find a contract C′ = (A ′,G′, X) such that
(C′, {Ci }N

i=1) is proper and there exists no other contract C′′ = (A ′′,G′′, X) that refines C′ (a
special case of Definition 8 as previously mentioned) such that (C′′, {Ci }N

i=1) is proper; and
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Fig. 9 A composition structure of two-level contract hierarchy (CEsys , {Cpot ,Cbat ,Cl Meter })

second, checkwhether C′ refines C. In accordance with themeta theory in [33], the contract C′
in such an approach corresponds to an instantiation of parallel composition [3–5,37,44,56]
of {Ci }N

i=1 using condition (i) of Corollary 1.
Notably, the indirectway does not require checking that any two-level contract (C, {Ci }N

i=1)

is proper, but rather only the special case of refinement. The indirect way does, however,
require computing parallel composition, which is not required for the more direct approach.
The rest of this section will focus only on the graph-based approach and on supporting the
direct, rather than the indirect, approach. The main reason for doing so is that the indirect
approach requires a way of checking refinement anyways and this is supported by the graph-
based approach. That is, the graph-based approach provides a partial foundation for enabling
the indirect approach, while the inverse is not true.

6.1 Composition structures of contract hierarchies

Prior to presenting the formal definition of a composition structure, the concept is
introduced in an informal manner by structuring a two-level contract hierarchy
(CEsys, {Cpot ,Cbat ,Cl Meter }). The contracts express specifications for the elements of the
electric-system of an LM-system, e.g. the one shown in Fig. 5.

Consider the assumptions and the guarantee of each contract in set of contracts
{CEsys ,Cpot ,Cbat ,Cl Meter } being structured as nodes in a directed graph, as shown in Fig. 9
where the boxes with rounded corners and dashed edges have been added to also show the
two-level contract hierarchy. The set of incoming arcs to a guaranteeG from a set of assump-
tionsA , represents thatA andG are in the same contract, e.g. the arc fromAEsys to guarantee
GEsys represents contract ({AEsys},GEsys, X Esys).

The set of incoming arcs to an assumption A from a set of assertions {Wi }N
i=1 where Wi

is either an assumption or a guarantee represents the intent
⋂N

i=1 Wi ⊆ A. For example, the
arc to Apot2 from assumption AEsys , represents the intent of AEsys ⊆ Apot2.

The set of incoming arcs to a guarantee G from a set of guarantees {G j }M
j=1 represents

the intent of
⋂M

j=1G j ⊆ G. For example, the arc from the guarantee Gl Meter to GEsys ,
represents the intent of Gl Meter ⊆ GEsys .

Now that the concept of a composition structure has been introduced informally, the formal
definition follows.

Definition 9 (Composition structure of contract hierarchy) Given a contract C = (A ,G, X)

and a set of contracts {Ci = (Ai ,Gi , Xi )}N
i=1 where X ⊆ ⋃N

i=1 Xi , a composition structure
D of two-level contract hierarchy (C, {Ci }N

i=1) is a Directed Acyclic Graph (DAG), such that:
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(a) the guarantees Gi , the assumptions in each Ai , the assumptions in A , and guarantee G
are the nodes in D;

(b) G has no successors;
(c) each assumption in A has no predecessor;
(d) at least one Gi is a direct predecessor of G;
(e) each assumption in each Ai has at least one predecessor;
(f) the assumptions in Ai are the only direct predecessors of each Gi ;
(g) Gi is the only direct successor of each assumption in each Ai ; and
(h) G is a direct successor of each assumption in A . �

As described in the beginning of this section and in Definition 9, a composition structure
represents a structuring of a two-level contract hierarchy as expressed in condition (a) where:
the set of incoming arcs to a guarantee from a set of assumptions represents that the assump-
tions and the guarantee are in the same contract as expressed in conditions (f) and (h); the
intent is that at least one guarantee Gi or an assumption in A should be a subset of each
assumption in Ai , as expressed in conditions (b) and (g), and condition (e) in particular; and
the intent is that at least one guaranteeGi should be a subset of the guaranteeG, as expressed
in condition (d). Condition (c), and further also conditions (b), (f), and (g), disallow the
existence of any other arcs from those not already mentioned above.

Out of general assume-guarantee theories [3,4,33–59], only [48] considers a graph-based
approach for structuring contracts. However, in contrast to [48] where the aim of the structur-
ing is to be able to verify a set of contracts with circular dependencies (see Remark 1 in the
end of this section), a composition structure represents a structuring of a two-level contract
hierarchy in general.

Apart from general assume-guarantee theories, composition structures do have a lot in
common with Goal Oriented Requirements Engineering (GORE) models, see e.g. I* [74] or
KAOS [75] or [76] for a survey, where [74,75] draw on ideas presented in [77–79]. The main
difference is, again, that while a composition structure represents a structuring of a two-level
contract hierarchy in general, GORE models are more specific since the use of assumptions,
also called expectations, in GORE models are strictly limited to top-level specifications that
split the responsibilities between a SW system and its environment. Furthermore, a similar
concept to a contract structure is presented in [80,81] based on Bayesian networks, but with
the specific focus to model failure propagation.

Given a composition structureD of a contract hierarchy (C, {Ci }N
i=1), in accordance with

Definition 9, each assumption and each guarantee in C and Ci are nodes in D. There are,
however, cases when re-using an assumption or a guarantee would be preferred [15], e.g. if
two guarantees rely on the same assumption or if a guarantee is equal to an assumption. In
practice, such a case can be represented by either the use of a single node or to label one
node as a copy of another.

Remark 1 (Circular reasoning) Since a composition structure is a directed acyclic graph
where the assumptions and guarantees are the nodes, the use of circular argumentation is
avoided. Note that circularity can be resolved in other ways, e.g. by introducing assumptions
about the computational model [34] or the timing model [48]. See also [82,83] for more
discussions on such matters. �
6.2 Sufficient conditions for proper contract hierarchy

This section presents sufficient conditions for a two-level contract hierarchy (C =
(A ,G, X), {Ci = ({Ai j }Mi

j=1,Gi , Xi )}N
i=1) to be proper in accordance with Definition 8,
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based on the concept of a composition structure. The sufficient conditions supports a way of
establishing that (C, {Ci }N

i=1) is proper, without having to iterate through each possible set of
elements {(Xi ,Bi )}N

i=1 to determine that their composition onto X is such that condition (i)
of Corollary 1 holds with respect to C, if each element (Xi ,Bi ) is such that condition (i) of
Corollary 1 holds with respect to (Ai ,Gi , Xi ).

Consider a composition structure ofD of (C, {Ci }N
i=1). Let d Pred() denote a function that

takes a node W in D as input and returns the set of all nodes that are direct predecessors of
W. As presented in Sect. 6.1, the composition structure D represents the intent that

⋂

W∈d Pred(G)∩{Gi }N
i=1

W ⊆ G, and (17)
⋂

W∈d Pred(Ai j )
W ⊆ Ai j , for each i, j. (18)

As an example, the composition structure of (CEsys, {Cpot ,Cbat ,Cl Meter }) in Fig. 9 represents
the intent that relationGl Meter ⊆ GEsys holds, and furthermore that relationsGbat ⊆ Apot1,
AEsys ⊆ Apot2, Gpot ⊆ Al Meter hold.

However, as will be shown in the following illustrative Examples 2a, 2b, and 2c, the fact
that relations (17) and (18) hold forD does not imply that (C, {Ci }N

i=1) is proper. As a quick
overview, Examples 2a and 2b will show that properness cannot be ensured if either the
assumptions inAA or guaranteeG of contract C constrains port variables in set

⋃N
i=1 Xi \ X .

Example 2c shows the need to introduce an additional condition for the specific purpose of
ensuring that relationAA ∩G ⊆ B (of condition (i) of Corollary 1) holds for the composition
(X,B) of each set of elements {(Xi ,Bi )}N

i=1 where (Xi ,Bi ) is such that condition (i) of
Corollary 1 holds with respect to Ci = (Ai ,Gi , Xi ).

Example 2a Consider that a composition structure Da of a two level contract hierarchy
(C′

Esys, {Cpot ,C′
bat ,Cl Meter }) is the resulting composition structure frommaking the following

modifications to the composition structure and two-level contract hierarchy shown in Fig. 9:
in contract C′

bat = ({},G′
bat , Xbat ), it holds that G′

bat = Ω , instead of being specified by
equation vre f − vgnd = 5V ; A′

Esys in contract C′
Esys = ({A′

Esys},GEsys, X Esys) is specified
by equations f = h and vre f − vgnd = 5V , instead of only f = h; and that an outgoing
arc has been added from A′

Esys to Apot1. In accordance with relation (18), the intent is that
A′

Esys ∩ Ω ⊆ Apot1, which is equal to ∅ �= A′
Esys ⊆ Apot1. In accordance with Definition 5,

due to the fact that Apot1 restricts {vre f , vgnd}, AEsys also needs to restrict {vre f , vgnd} in
order for relation (18) to hold. Note that neither vre f nor vgnd are in X Esys .

Now consider set of elements {E′
bat , Epot , El Meter } where Epot and El Meter are shown in

Fig. 5 and where E
′
bat is the modification of Ebat such that the behavior of E

′
bat is equal to

Ω , instead of being specified by equation vre f − vgnd = 5V . It trivially holds that elements
E

′
bat , Epot , El Meter are such that condition (i) of Corollary 1 holds with respect to C′

bat , Cpot ,
and Cl Meter . Furthermore, it can easily be realized that relations (17) and (18) hold for Da .
However, since relation vre f −vgnd = 5V is ensured byA′

Esys , rather than by the behavior of
E

′
bat , the behavior of the composition E

′
sys of {E′

bat , Epot , El Meter } onto X Esys is Ω , rather
than being specified by l = h. This means that E

′
sys is not such that relation (7) of condition

(i) of Corollary 1 holds with respect to C′
Esys , i.e. it does not hold thatA

′
Esys ∩B′

Esys ⊆ G′
Esys .

Thus, the composition E
′
Esys of {E′

bat , Epot , El Meter } onto X Esys is not such that condition
(i) of Corollary 1 holds with respect to C′

Esys . �

As shown in Example 2a, the fact that it is necessary for A′
Esys to restrict port variables

in Xbat ∪ X pot ∪ Xl Meter \ X Esys , in order for relation (18) to hold, means that even if
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relations (17) and (18) do hold, (C′
Esys, {Cpot ,C′

bat ,Cl Meter }) is not proper. Notably, regardless
if is necessary or not for A′

Esys to restrict port variables in Xbat ∪ X pot ∪ Xl Meter \ X Esys , if
A′

Esys does restrict such variables, then in accordance with Definition 5, there does not exists
an element that non-trivially fulfills A′

Esys . That is, the fact that A
′
Esys restricts variables in

Xbat ∪ X pot ∪ Xl Meter \ X Esys is undesirable all together.
Considering the general case with a composition structure D, a sufficient condition for

ensuring that AA does not restrict port variables in
⋃N

i=1 Xi \ X is to ensure that AA does
not constrain any port variable in

⋃N
i=1 Xi \ X , i.e.

(XAA
\ X) ∩

N⋃

i=1

Xi = ∅. (19)

Notably, while ensuring thatAA does not restrict port variables in
⋃N

i=1 Xi \X , in accordance
with Proposition 4, it is also the case that relation (19) can be enforced without loosing
expressiveness. However, the fact that relation 19 holds in combination with relations (17)–
(18), as will be shown by the following illustrative Examples 2b and 2c, is not sufficient to
ensure that (C, {Ci }N

i=1) is proper; thus, additional conditions are presented in the following.

Example 2b Suppose that a composition structure Db of a two level contract hierarchy
(C′′

Esys, {Cpot ,Cbat ,C′′
l Meter }) is the resulting composition structure frommaking the following

modifications to the composition structure and two-level contract hierarchy shown in Fig. 9:
both guarantees G′′

l Meter and G′′
Esys in C′′

Esys = ({AEsys},G′′
Esys, X Esys) and C′′

l Meter =
({Al Meter },G′′

l Meter , Xl Meter ) are specified by equations
vbranch−vgnd

5 = f and f = l, instead
of f = l. Considering the composition of the set of elements {Ebat , Epot , El Meter } onto
X Esys , i.e. element EEsys shown in Fig. 5, due to the fact that AEsys ∩ BEsys is specified by
equations f = h and l = h, it holds that AEsys ∩BEsys is non-empty and constrains exactly
{ f, l, h}. In accordance with Definition 5, from the fact that G′′

Esys does indeed restrict both
vbranch and vgnd , where neither of these are in { f, l, h}, it follows that relation (7) of condition
(i) of Corollary 1 does not hold, i.e. that AEsys ∩ BEsys � G′′

Esys . �
Example 2c Consider that a composition structure Db of a two level contract hierarchy
(CEsys, {Cpot ,Cbat ,C′′′

l Meter }) is the resulting composition structure frommaking the following
modifications to the composition structure and two-level contract hierarchy shown in Fig. 9:
guarantee G′′′

Esys in the contract C′′′
l Meter = ({Al Meter },G′′′

l Meter , Xl Meter ) is specified by
relation l − 0.1 ≤ f ≤ l + 0.1, instead of equation f = l. Considering element EEsys , since
BEsys is specified by equation l = f and AEsys ∩ G′′′

Esys by relation l − 0.1 ≤ f ≤ l + 0.1
and equation h = f , relation (8) of condition (i) of Corollary 1 does not hold. That is, it does
not hold that AEsys ∩ G′′′

Esys ⊆ BEsys . �
In both Examples 2b and 2c, it trivially holds that elements Ebat , Epot , and El Meter are

such that condition (i) of Corollary 1 hold with respect to the contracts containing their sets
of port variables. Furthermore, it can easily be realized that relations (17) and (18) hold for
bothDb andDc. However, since neither one of relationsAEsys ∩BEsys ⊆ G′′

Esys andAEsys ∩
G′′′

Esys ⊆ BEsys hold, it does not follow that the composition EEsys of {Ebat , Epot , El Meter }
onto X Esys is such that condition (i) of Corollary 1 holds with respect to any of C′′

Esys
or C′′′

Esys . Hence, despite the fact that relations (17) and (18) hold for Db and Dc, neither
(C′′

Esys, {Cpot ,Cbat ,C′′
l Meter }) nor (CEsys, {Cpot ,Cbat ,C′′′

l Meter }) are proper.
For a two level contract hierarchy ((A ,G, X), {({Ai j }Mi

j=1,Gi , Xi )}N
i=1), similar to Exam-

ples 2a, 2b shows that if G restricts a variable in
⋃N

i=1 Xi \ (X ∪ XAA
), then (C, {Ci }N

i=1)
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is not proper. In accordance with Proposition 4, a sufficient condition to avoid this case, but
without loosing expressiveness, is (XG \ XAA

)∩⋃N
i=1 Xi = ∅. This and relation (19) imply

that

(XG \ X) ∩
N⋃

i=1

Xi = ∅. (20)

Example 2c, on the other hand, shows that it is necessary for G to be a subset of the
extended projection of the guarantees Gi onto Ξ \ (

⋃N
i=1 Xi \ X). That is, it is necessary

thatG ⊆ p̂roj
Ξ\(⋃N

i=1 Xi \X)
(
⋂N

i=1 Gi ). However, given that this holds, as well relations (19)

and (20), it follows thatGmust be equal to p̂roj
Ξ\(⋃N

i=1 Xi \X)
(
⋂N

i=1Gi ), rather than a subset,
i.e. that

G = p̂roj
Ξ\(⋃N

i=1 Xi \X)
(

N⋂

i=1

Gi ). (21)

This can be realized by considering that p̂roj
Ξ\(⋃N

i=1 Xi \X)
(
⋂N

i=1 Gi ) ⊆ G, which follows

from the fact that relations (20) and (19) respectively imply thatG = p̂roj
Ξ\(⋃N

i=1 Xi \X)
(G)

in accordance with Proposition 1 and

N⋂

i=1

Gi ⊆
⋂

W∈d Pred(G)∩{Gi }N
i=1

W ⊆ G.

To characterize a composition structure where relations (17)–(21) hold, the concept of a
proper composition structure is introduced.

Definition 10 (Proper composition structure)Given a composition structureDof a two-level
contract hierarchy

((A ,G, X), {({Ai j }Mi
j=1,Gi , Xi )}N

i=1)

consisting of a contract (A ,G, X) and set of contracts {({Ai j }Mi
j=1,Gi , Xi )}N

i=1 where X ⊆
⋃N

i=1 Xi , the composition structure D is proper, if:

(i)
⋂

W∈d Pred(G)∩{Gi }N
i=1

W ⊆ G;

(ii)
⋂

W∈d Pred(Ai j )
W ⊆ Ai j for each i, j ;

(iii) ((XG ∪ XAA
) \ X) ∩ ⋃N

i=1 Xi = ∅; and
(iv) G = p̂roj

Ξ\(⋃N
i=1 Xi \X)

(
⋂N

i=1 Gi ) . �

Condition (i) and (ii) of Definition 10 are relations (17) and (18), respectively. Condition
(iii) of Definition 10 combines relations (19) and (20) into a single condition. Considering
Example 2a, due to the fact that

((XGEsys ∪ XA′
Esys

) \ X Esys) ∩ (X pot ∪ Xbat ∪ Xl Meter ) = {vre f , vgnd} �= ∅ ,

condition (iii) of Definition 10 ensures that the case highlighted in Example 2a is avoided.
Furthermore, condition (iii) also ensures that the case highlighted in Example 2b is avoided
considering that

((XG′′
Esys

∪ XAEsys ) \ X Esys) ∩ (X pot ∪ Xbat ∪ Xl Meter ) = {vbranch, vgnd} �= ∅.
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Condition (iv) of Definition 10 is relation (21). Considering Example 2c, it holds that
Ξ \ {vre f , vgnd , vbranch} = Ξ \ ((X pot ∪ Xbat ∪ Xl Meter ) \ X Esys), which means that

p̂rojΞ\((X pot ∪Xbat ∪Xl Meter )\X Esys )
(G′′′

l Meter ∩ Gbat ∩ Gpot )

and GEsys are specified by equation f = l and relation l − 0.1 ≤ f ≤ l + 0.1, respectively.
It follows that

GEsys � p̂rojΞ\((X pot ∪Xbat ∪Xl Meter )\X Esys )
(G′′′

l Meter ∩ Gbat ∩ Gpot ) ,

which means that condition (iv) of Definition 10 ensures that the case highlighted in Exam-
ple 2c is avoided.

A theorem that presents sufficient conditions of a two-level contract hierarchy being proper
now follows.

Theorem 5 Given a contract C = (A ,G, X) and a set of contracts {Ci }N
i=1 where Ci =

(Ai ,Gi , Xi ) and X ⊆ ⋃N
i=1 Xi , two-level contract hierarchy (C, {Ci }N

i=1) is proper if there
exists a proper composition structure of (C, {Ci }N

i=1).

The proof of Theorem 5 is found in “Appendix A”.
To illustrate the use of Theorem 5, consider the scenario with phases (I’–III’)

and, more specifically, that the two-level contract hierarchy established in phase (I’)
is (CEsys, {Cpot , Cbat , Cl Meter }). As previously mentioned, in order to complete phase
(III’), this two-level contract hierarchy needs to be proper. As expressed in Theorem 5,
a sufficient condition for this is that there exists a proper composition structure of
(CEsys, {Cpot , Cbat , Cl Meter }). Hence, in accordance with Theorem 5, if e.g. the composition
structure of (CEsys, {Cpot , Cbat , Cl Meter }) inFig. 9 is proper, then (CEsys, {Cpot , Cbat , Cl Meter })
must also be proper. The followingwill examine if the composition structure in Fig. 9 is indeed
proper, i.e. if it is in accordance with Definition 10.

As shown in the composition structure of (CEsys, {Cpot , Cbat , Cl Meter }) in Fig. 9, it trivially
holds that conditions (i) and (ii) ofDefinition 10 hold. Furthermore, considering that the union
of sets of variables { f, l} and { f, h}, respectively constrained by GEsys and AEsys , and set
(X pot ∪ Xbat ∪ Xl Meter ) \ X Esys = {vre f , vgnd , vbranch} are disjoint, i.e. that { f, l, h} ∩
{vre f , vgnd , vbranch} = ∅, condition (iii) of Definition 10 is met. Finally, since the extended
projection of Gl Meter ∩ Gbat ∩ Gpot onto Ξ \ {vre f , vgnd , vbranch} = Ξ \ ((X pot ∪ Xbat ∪
Xl Meter ) \ X Esys) is equal to GEsys , condition (iv) of Definition 10 also holds. This means
that the composition structure shown in Fig. 9 is proper.

Due to the fact the composition structure in Fig. 9 is proper, it follows that (CEsys, {Cpot ,

Cbat , Cl Meter }) also is proper in accordance with Theorem 5. Thus, in accordance with Defi-
nition 8, for any set of elements with sets of port variables X pot , Xbat , Xl Meter where these
elements are developed by the suppliers in phase (II’) such that condition (i) of Corollary 1
holds with respect to contracts Cpot , Cbat , and Cl Meter , it follows that the composition of
such a set of elements is such that condition (i) of Corollary 1 holds with respect to CEsys .
For example, consider that the suppliers develop elements Ebat , Epot , and El Meter in phase
(II’). It trivially holds that each element Ei ∈ {Ebat , Epot , El Meter } is such that condition
(i) of Corollary 1 holds with respect to Ci ∈ {Cpot , Cbat , Cl Meter }. Due to this and the fact
that (CEsys, {Cpot , Cbat , Cl Meter }) is proper, it automatically follows that EEsys is such that
condition (i) of Corollary 1 holds with respect to CEsys , as desired in phase (III’).
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7 Discussion and related work

This section extends the discussions in Sects. 1–6 regarding proposed conditions (i) and (ii)
of Corollary 1 and relations between these conditions and other concepts in the present paper
with similar conditions and concepts in other work.

7.1 Conditions of contracts

As shown in Sect. 3.2, conditions (i) and (ii) of Corollary 1 with respect to a contract C =
(A ,G, X), or more specifically conditions AA ∩ B ⊆ G and AA ∩ G ⊆ B on an element
E = (X,B) and conditionsBEnvE (E) ⊆ AA andBEnvE (E)∩G �= ∅onenvironment EnvE (E),
can be derived from a context characterized by the OEM/supplier scenario described in
Sect. 3.2. More specifically, these conditions are derived to ensure that guarantee G is non-
trivially fulfilled in a context subject to the following criteria:

(a) it cannot be ensured that the set of ports of element E are partitioned into inputs and
outputs; and

(b) element E and its environment EnvE (E) are developed in complete isolation.

Note that contract C is not necessarily limited to the set of ports of E.
Conditions AA ∩ B ⊆ G and BEnvE (E) ⊆ AA have already been established in previous

contract theories, e.g. [3,5]. As mentioned in Sect. 1, in a context where criterion (a) does
not hold, i.e. when the set of ports of the element are partitioned into inputs and outputs, the
non-trivial solution can typically be avoided by complementing conditions AA ∩B ⊆ G and
BEnvE (E) ⊆ AA with additional conditions on receptivity [3,5] of input ports.

In comparison to theories such as [3–5,37] where the only conditions, additional to AA ∩
B ⊆ G and BEnvE (E) ⊆ AA , are conditions solely applicable when criterion (a) does not
hold, condition AA ∩G ⊆ B, proposed in the present paper, might appear too strict. This is
due to the fact that relation AA ∩ G ⊆ B, in combination with AA ∩ B ⊆ G, requires that
A∩B = A∩Gwhile the input and output case allows B to be such that A∩B ⊆ A∩G. This
additional implementation flexibility of the element is in the input and output case achieved
solely through the constraint that the environment must be receptive to output ports, thus
allowing the element to enforce stronger constraints on outputs than specified by guarantee
G. When relaxing this constraint, as needed whenever criterion (a) holds, Theorem 1 shows
thatAA ∩G ⊆ B is indeed not too strong, despite the fact that less implementation flexibility
of the element is given in comparison to the input and output case.

Analogous to the case where criterion (a) does not hold, conditions AA ∩ G ⊆ B and
BEnvE (E) ∩G �= ∅ might also be too strict in a context where criterion (b) does not hold, i.e.
when E and EnvE (E) are not developed in isolation from each other. An example of such a
case iswhen bothE and EnvE (E) are developedwithin the same company.Due to the fact that
the team that develops E has full access to EnvE (E), non-trivial solution B∩BEnvE (E) �= ∅
is avoided by composing the elements in a trial-and-error fashion, relying on the expertise of
the in-house development teams to make small modifications to the behaviors when needed.
Therefore, in order to ensure that the guarantee is non-trivially fulfilled in such a context,
it is sufficient that respective AA ∩ B ⊆ G and BEnvE (E) ⊆ AA on the element and the
environment hold.

Notably, in the present paper, conditions (i) and (ii) of Corollary 1, as well as the con-
tract conditions and properties presented in Sects. 4–6 are all derived from the industrially
relevant OEM/supplier scenario. Another way to derive contract conditions and properties is
to first define a refinement preorder on contracts, and then use this relation to derive further
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conditions and properties of contracts. As previously mentioned in Sect. 6, in the context of
the proposed contract conditions in the present paper, refinement is simply a special case of
Definition 8, i.e. a proper contract hierarchy of the form ((A ,G, X), {(A ′,G′, X)}).

Refinement has the property that if relation (4) holds for a set of elements E containing an
elementE = (X,B) that is such that condition (i) holds with respect to a contract (A ,G, X),
then relation (4) will also hold if E is replaced with an element E

′ = (X,B′) that is such
that condition (i) of Corollary 1 holds with respect to a contract (A ′,G′, X) that refines
(A ,G, X). This property of refinement is called independent implementability in [84]. It
is also stated in [84] that independent implementability can only be ensured in a context
where ports are partitioned into inputs and outputs. Notably, this statement is indeed true
when refinement is defined to mean that AA ⊆ AA ′ and G′ ⊆ G, as in e.g. [3,5] and
corresponding to AA → AA ′ and G′ → G in [84]. Notably, these conditions allow that
A ∩ G′ ⊆ A ∩ G, which means that the conditions are actually tailored for the input-
output case since relation BEnvE (E′) � A ∩ G \ (A ∩ G′), necessary for relation (3) to hold
when E is replaced with E

′, is ensured solely through the constraint that the environment
must be receptive to output ports. If this constraint is relaxed, as required when inputs and
outputs are not considered, conditions AA ⊆ AA ′ and G′ ⊆ G do not ensure the property
of independent implementability. However, this property is indeed ensured if refinement is
defined as a proper contract hierarchy of the form ((A ,G, X), {(A ′,G′, X)}) as in the present
paper, instead of being defined to mean conditions AA ⊆ AA ′ and G′ ⊆ G as in [3,5,84].
This can be understood by considering the fact that sufficient and necessary conditions for
a contract hierarchy ((A ,G, X), {(A ′,G′, X)}) to be proper are AA ⊆ AA ′ , G′ ⊆ G, and
AA ∩ G′ = AA ∩ G. Condition AA ∩ G′ = AA ∩ G, additional to the conditions for
refinement proposed in [3,5,84], caters to the relaxation of the constraint applicable only
when inputs and outputs are considered.

7.2 Contracts and their properties, compositionality, elements, and runs

In Sects. 1–6, a vast number of general assume-guarantee theories [4,33–59] have been
referred to, without a proper introduction. Therefore, the following two paragraphs of this
section is dedicated to describing the contexts and applications of these general theories, as
well as related concrete theories. The rest of this section compares the present paperwith these
theories and other related work, focusing on technical matters that have not been previously
discussed in the present paper.

As mentioned in Sect. 3, the notion of contracts was first introduced in [1] to be used
as formal specification in object-oriented programming. Since then, the use of contracts has
been extended to component-based design [85] and a contract theory for analog systems
have been proposed in [38,86]. Contracts have also been introduced in formalisms Behavior
Interaction Priority (BIP) [87] and refinement calculus [88], in [39,89] and [40], respec-
tively. Furthermore, in European research project SPEEDS [6], a contract theory [3–5] was
introduced as a means to meet the challenges in the design of heterogeneous systems [7–9].
Similar work to [3–5] is presented in [46] and in [35] with tool support [90], and also in
a more applied setting in [91,92]. The use of theory [3–5] has been advocated in [10–15]
and the use of contracts in general has been proposed for analyzes integration [93] and as a
means to achieve functional safety in [94,95] and also in [96] with tool support [97]. Contract
theory has also been extended both with modalities [98] in [12,41] and to a stochastic set-
ting in [37,42]. Meta theories of contracts have been established in [33,36], and in [44] with
refinement [45]. Theory [44] also clarifies the distinction between contracts and specification
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theories, e.g. [56,99,100] that extend interface automata [101,102] and where [56] is shown
to also support assume-guarantee reasoning in [103].

More generally than contracts, assume-guarantee reasoning can be traced back to two
independent theories [104,105] and [50] concerning compositional [31,32] proof methods
for concurrent programs. However, the ideas in [50,104,105] can be traced even further
back to proof methods [2,106,107] for sequential programs and non-compositional proof
methods [108–110] for concurrent programs. Since the conception of [50,104,105], several
theories that extend the ideas in [104,105] and [50], have emerged, such as e.g. [34,48]
and [49,111], respectively. Furthermore, assume-guarantee reasoning has also been used in
formal verification, see e.g. [59,112,113] or [114] for an overview. Moreover, automatic
techniques for assume-guarantee reasoning have been proposed, see e.g. [115] or [116] for a
survey. Given that the two approaches [104,105] and [50] are the same in principle, meta the-
ories [47,51–54], and [54] as an extension of [117], have been introduced to unify [104,105]
and [50]. General assume-guarantee theories are also presented in [57,58], and in [43] based
on [118,119]. Furthermore, with inspiration from [48,120], how to perform compositional
verification on architecture models is described in [121].

As previously mentioned in Sect. 6, both properties refinement and parallel composition
can be derived from Definition 8 in accordance with the meta theory in [33]. As further
shown in [33] and also in [44], these properties also allow deriving other properties of
contracts, namely conjunction [3–5,33,37,56] and quotient [33,56]. While both parallel
composition and conjunction merge a set of contracts into a single contract, the latter is only
applicable when the contracts contain the same set of port variables and concerns the case
when the contracts are specified for different viewpoints [122,123]. Quotient computes a
missing contract in a contract hierarchy to achieve compositionality.

InSect. 2.2, the concept of an element that essentially corresponds to aHRC[68,69] as used
in [3–5],was introduced. Themain difference is that aHRCcan have several implementations,
i.e. behaviors, which means that an element corresponds to an implementation of a HRC,
rather than to a HRC itself. An element in the present paper is in that sense more similar to a
component as defined in [65] that is inspired by the tagged signal model [124] and interface
theory [125].

In accordance with [3–5] and also with [14,64], contracts and behaviors of elements
are in the present paper both defined by relying on the concept of assertions as a set of
runs. The concept of runs is, in turn, largely inspired by the works in [36,126,127] that
generalize the concept of traces [61–63] to behaviors that are independent of a particular
model of computation. Notably, two assertions are equivalent if they have the same runs, i.e.
they are trace-equivalent [128], which means that assertions are limited to a weaker form of
equivalence than e.g. observation equivalence [129] or equivalence through alternating simu-
lation [130], which can be verified on labeled and alternating transition systems, respectively.
However, as shown in [128], for deterministic models, trace equivalence means observation
equivalence, and vice versa.

8 Conclusion

This paper has presented a general compositional contract theory formodeling and specifying
heterogeneous systems. As themain contribution, given a contract for an element representing
any part of a heterogeneous system, e.g. SW, mechanical, or electrical part, Corollary 1
presented clearly separated conditions (i) and (ii) on the element and its environment where
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the conditions ensure that the guarantee is non-trivially fulfilled by the composition of the
element and the environment.

In contrast to similar conditions of other general assume-guarantee theories [3–5,33–59],
while explicitly considering the set of port variables of an element, conditions (i) and (ii)
require neither that this set is partitioned into inputs and outputs nor that the assumptions and
guaranteemust be specified over this set of port variables. The formermeans that the causality
of the port variables can remain unspecified, which is common and recommended practice
when modeling physical parts. The latter allows assigning the responsibility of fulfilling a
global property to the element; this is needed in order to properly express safety specifications
for the element, e.g. in accordance with ISO 26262.

The ability to assign the responsibility of fulfilling a global property to an element,
increases the expressiveness with respect to how a contract can be specified. To facilitate
the specification of contracts in practice, scoping conditions were introduced that limit the
set of port variables over which the assumptions and the guarantee of a contract are speci-
fied. These scoping conditions ensure that certain necessary properties of conditions (i) and
(ii) are are not violated without limiting expressiveness. Notably, these conditions can be
checked, not only for the cases where the assumptions and the guarantee are specified using
formal notation, but also when they are specified using semi-formal notation, e.g. as free text
with formal references to port variables of elements. Hence, considering a tool where these
checks are automatically performed, feedback to a user specifying a contract can be given,
both when semi-formal and formal notations are used.

In the context of a scenario where a contract is used to outsource the development of an
element, necessary contract properties consistency and compatibility were presented. Com-
plementary necessary and sufficient conditions of these propertieswere also introducedwhere
these conditions are easier to enforce in practice (e.g. by a tool) than their corresponding
definitions. Furthermore, as a basis for structuring contracts in parallel to an hierarchical com-
position of a set of elements, a graph, called a composition structure, was introduced. Based
on a composition structure, sufficient conditions to achieve compositionality was presented.
Note that proving that the sufficient conditions hold, requires specifying the assumptions and
the guarantees using formal notation. However, regardless if the assumptions and guarantees
are specified using formal, semi-formal, or informal notation, e.g. as free text, the conditions
for structuring the overall intended relations between the assumptions and guarantees as a
composition structure, still apply. This means that, regardless of the level of formalization
used in the specifications, support for structuring a contract hierarchy can be given in the
form of a tool that enforces these conditions.

Considering the concepts presented above, they are all general in both the senses that
they are relevant to any developer of heterogeneous system parts, and that they rely on a
general set-theoretic formalism. Due to the generality of the theory, it is essentially applicable
in any context, and it can also be instantiated by more concrete theories whenever needed.
Moreover, the theory is tightly coupledwith practical applicationwhere introduceddefinitions
have been both well motivated by industrial needs and/or scenarios, and complemented with
necessary and sufficient conditions that can more easily be enforced in practice, e.g. by tools
implementing the theory. As previously mentioned, the concrete support that can be given by
such tools, is not limited to the cases where formal notations are used, but also when semi-
formal and informal notations are used. Hence, not only does the presented theory constitute
a general compositional contract theory for modeling and specifying heterogeneous systems,
but the theory is indeed also accommodated for providing concrete support for developing
such systems in practice.
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A Appendix

This section presents proofs of Propositions 1 and 5, Lemmas 1 and 2, and Theorems 2 and 5.

Proposition 1 Given an assertion W, a set of variables X is equal to XW if and only if each
variable in X is constrained by W and p̂roj X (W) = W.

Proof Consider an assertionW.
For the if part, assume that there exists a set of variables X constrained by W such that

p̂roj X (W) = W. Assume X �= XW, will be shown to lead to a contradiction. This means that
either: (i) X = ∅ and XW �= ∅ or (ii) there exists a variable x ∈ X that is not also in XW. From
assuming that case (i) holds, in accordance with relation (2), it follows that W = Ω since
p̂roj X=∅(W) = Ω and p̂roj X (W) = W. This and the fact that XW �= ∅ imply, in accordance

with Definition 1, that there exists a variable x ∈ XW such that p̂rojΞ\{x}(Ω) �= Ω . This is
a contradiction since, in accordance with Sect. 2.1 and relation (2), Ω is indeed obtained if
the set of all runs forΞ \{x} is extended with all runs for x . Hence, case (i) must be false, and
it must either be that case (ii) holds or that assumption X �= XW is false. Assuming that case
(ii) holds directly yields a contradiction since this would mean that there exists a variable
x /∈ XW such that p̂rojΞ\{x}(W) �= W, which is not in accordance with Definition 1. This
means that the assumption that X �= XW must be false and thus, it follows that X = XW.

For the if-only part, it suffices to show that p̂roj XW
(W) = W, since W constrains each

variable in XW in accordance with Definition 1. Assume that p̂roj XW
(W) �= W, which will

be shown to lead to a contradiction. This implies that that there exists a run ωΞ,T ∈ W and a
pair (x /∈ XW, ξ ′) such that a run ω′

Ξ,T is not inW if ω′
Ξ,T is obtained by replacing the pair

(x, ξ) ∈ ωΞ,T with (x, ξ ′). In accordance with relation (2), this means that p̂rojΞ\{x}(W) �=
W and thus, W constrains x in accordance with Definition 1. However, this contradicts the
fact that x /∈ XW, which means that the assumption that p̂roj XW

(W) �= W must be false,

and it rather must hold that p̂roj XW
(W) = W, which completes the proof. �

Lemma 1 Given two assertions W and W′ where W ∪ W′ �= ∅, it holds that XW∪W′ ⊆
XW ∪ XW′ .

Proof In accordancewith Proposition 1, it holds thatW∪W′ = p̂roj XW
(W)∪ p̂roj XW′ (W

′).
Furthermore, in accordance with relation (2), it holds that p̂roj XW

(W) and p̂roj XW′ (W
′)

are obtained by extending projXW (W) and projXW′ (W′) with all possible runs for Ξ \ XW
and Ξ \ XW′ , respectively. Notably, both these set of runs are extended with all possible runs
for Ξ \ (XW ∪ XW′). This means, since W ∪ W′ = p̂roj XW

(W) ∪ p̂roj XW′ (W
′), that it

follows that W ∪ W′ is obtained by extending projXW∪XW′ (W ∪ W′) with all possible runs
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for Ξ \ (XW ∪ XW′). In accordance with Definition 1, this means that XW∪W′ ⊆ XW ∪ XW′ .
�

Proposition 5 Given two assertions W and W′ where W ∩W′ �= ∅, it holds that XW∩W′ ⊆
XW ∪ XW′ .

Proof Given two assertionsW andW′ whereW ∩ W′ �= ∅, in accordance with relation (1),
for each run ω ∈ W ∩ W′, it holds that projXW∪XW′ ({ω}) is in both projXW∪XW′ (W) and

projXW∪XW′ (W′). This and since p̂roj XW∪XW′ (W) = W and p̂roj XW∪XW′ (W) = W′ in
accordance with Proposition 1 and Sect. 2.1.2, imply that each run in p̂roj XW∪XW′ ({ω}) is in
bothW andW′. Overall, this means that each run ωXW∪XW′ ,T in projXW∪XW′ (W ∩W′) can
be extended with any run for Ξ \ (XW ∪ XW′) over T , and the obtained run will also be in
W∩W′. In accordance with relation (2), this means that p̂roj XW∪XW′ (W∩W′) = W∩W′.
In accordance with Proposition 1 and Sect. 2.1.2, it follows that XW∩W′ ⊆ XW ∪ XW′ . �

Lemma 2 Given two assertionsW andW′, and set of variables X, it holds that p̂roj X (W) ⊆
p̂roj X (W′), if W ⊆ W′.

Proof Given two assertions W and W′ and a set of variables X , consider that W ⊆ W′.
In accordance with relation (1), the set of runs projX (W) and projX (W′) are obtained by
removing each pair (x /∈ X, ξ) from each run in W and W′, respectively. This and since
W ⊆ W′, it follows that each pair that is removed from W′ to obtain projX (W′), is also
removed from W to obtain projX (W). Hence, it holds that projX (W) ⊆ projX (W′). In
accordancewith relation (2), assertions p̂roj X (W) and p̂roj X (W′) are obtained by extending
each run ωΞ,T in projX (W) and projX (W′) with all possible runs for Ξ \ X over T .
This and since projX (W) ⊆ projX (W′), it follows that each run ωΞ,T that is extended in
projX (W) with all possible runs for Ξ \ X over T to obtain p̂roj X (W), is also extended in
projX (W) with all possible runs for Ξ \ X over T to obtain p̂roj X (W′). Hence, it holds that
p̂roj X (W) ⊆ p̂roj X (W′). �
Theorem 2 Given a contract (A ,G, X)and set of variables X EnvE (E), there exists a contract
(A ′,G′, X) where:

a) XAA ′ ⊆ X EnvE (E); and
b) XG′ ⊆ X EnvE (E) ∪ X

such that for each set of elements containing an element (X,B) and where the environment
of (X,B) is pair (X EnvE (E),BEnvE (E)):

(i’) AA ′ ∩ B ⊆ G′ and AA ′ ∩ G′ ⊆ B, and
(ii’) BEnvE (E) ⊆ AA ′ and BEnvE (E) ∩ G′ �= ∅,

if and only if

(i) AA ∩ B ⊆ G and AA ∩ G ⊆ B, and
(ii) BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅.

Proof Consider a contract (A ,G, X) and a set of variables X EnvE (E). First, let (A ′,G′, X)

be a contract with a first property that AA ′ is the union of the behavior of each element
(X EnvE (E),BEnvE (E)) where BEnvE (E) ⊆ AA and BEnvE (E) ∩G �= ∅. This means, in accor-
dancewithLemma1 andDefinition 2, it holds that condition (a) holds, i.e. XAA ′ ⊆ X EnvE (E).
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Generally, this first property also implies that

∀(X EnvE (E),BEnvE (E)) where BEnvE (E) ⊆ AA and BEnvE (E) ∩ G �= ∅ :
BEnvE (E) ⊆ AA ′ ⊆ AA . (22)

As a second property, consider thatG′ is the union of each intersectionAA ∩Bwhere (X,B) is
an element where ∅ �= AA ∩B ⊆ G andAA ∩G ⊆ B. Given the fact that XAA ′ ⊆ X EnvE (E)

and in accordance with Lemma 1, Proposition 5, and Definition 2, it follows that condition
(b) holds, i.e. XG′ ⊆ X EnvE (E) ∪ X . Generally, this also implies that

∀(X,B) where AA ∩ B ⊆ G and AA ∩ G ⊆ B : AA ∩ B ⊆ G′ ⊆ G. (23)

Now, for the if case, assume that conditions (i) and (ii) hold with respect to (A ′,G′, X) for an
arbitrary set of elementsE containing an element (X,B) andwhere pair (X EnvE (E),BEnvE (E))

is the environment of (X,B). Condition (ii) and relation (22) imply that

BEnvE (E) ⊆ AA ′ ⊆ AA . (24)

Condition (i) and relation (23) imply that AA ∩ B ⊆ G′ ⊆ G. This and relation (24) imply
that

AA ′ ∩ B ⊆ G′ ⊆ G. (25)

Furthermore, in accordancewith Theorem 1, conditions (i) and (ii) imply thatBEnvE (E)∩B �=
∅. This and relations (24) and (25) imply thatBEnvE (E)∩G′ �= ∅. Finally, relationAA ∩G ⊆ B
of condition (i) and the fact that AA ′ ⊆ AA and G′ ⊆ G, as expressed in relations (24)
and (25), respectively, imply that AA ′ ∩ G′ ⊆ B. Relations (24), (25), BEnvE (E) ∩ G′ �= ∅
and AA ′ ∩ G′ ⊆ B imply that conditions (i’) and (ii’) hold.

For the if-only case, assume that conditions (i’) and (ii’) hold for an arbitrary set of elements
E containing an element (X,B) and where pair (X EnvE (E),BEnvE (E)) is the environment of
(X,B). From the first and second property of contract (A ′,G′, X), it directly follows that
(X,B) and (X EnvE (E),BEnvE (E)) are such condition (i) and (ii) hold, respectively.

Thus, given contract (A ,G, X) and set of variables X EnvE (E), it can be concluded that
there exists a contract (A ′,G′, X) where conditions (a) and (b) hold such that for each
set of elements containing an element (X,B) and where pair (X EnvE (E),BEnvE (E)) is the
environment of (X,B), conditions (i’) and (ii’) hold if and only if conditions (i) and (ii) hold.

�
Theorem 5 Given a contract C = (A ,G, X) and a set of contracts {Ci }N

i=1 where Ci =
(Ai ,Gi , Xi ) and X ⊆ ⋃N

i=1 Xi , the two-level contract hierarchy (C, {Ci }N
i=1) is proper if

there exists a proper composition structure of (C, {Ci }N
i=1).

Proof Given a contract C = (A ,G, X) and a set of contracts {Ci }N
i=1 where Ci =

(Ai ,Gi , Xi ) and X ⊆ ⋃N
i=1 Xi , assume that there exists a proper composition structure

of the contract hierarchy (C, {Ci }N
i=1). In accordance with Definition 8, assume that there

exists an arbitrary set of elements {(Xi ,Bi )}N
i=1 such thatAA i ∩Bi ⊆ Gi andAA i ∩Gi ⊆ Bi

holds for each i .
With the intent to first show that the composition (X,B) of {(Xi ,Bi )}N

i=1 onto X is such
that AA ∩B ⊆ G holds, consider the fact that AA i ∩Bi ⊆ Gi holds for each i . In accordance
with Definition 9, this and since each assertion that is a direct predecessor of an assumption in
Ai is either a guaranteeG j or an assumption inA , it follows thatAA ∩⋂N

i=1 Bi ⊆ ⋂N
i=1 Gi in

accordance with condition (ii) of Definition 10. This and condition (i) of Definition 10 imply
thatAA ∩⋂N

i=1 Bi ⊆ G. In accordance with Sect. 2.1 and Proposition 1, this and considering
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that condition (iii) implies that neither AA nor G constrains any subset of
⋃N

i=1 Xi \ X , it

follows that AA ∩ p̂roj X (
⋂N

i=1 Bi ) ⊆ G due to the fact that X = ⋃N
i=1 Xi \ (

⋃N
i=1 Xi \ X).

In accordance with Definition 3, this means that it holds that AA ∩ B ⊆ G.
With the intent to now show that the composition (X,B) of {(Xi ,Bi )}N

i=1 onto X also is
such that AA ∩ G ⊆ B holds, consider the fact that AA i ∩ Gi ⊆ Bi holds for each i . In
accordance with Definition 9, this and since each assertion that is a direct predecessor of an
assumption in Ai is either a guarantee Gi or an assumption in A , it trivially follows that
AA ∩⋂N

i=1 Gi ⊆ ⋂N
i=1 Bi in accordance with condition (ii) of Definition 10. This and given

that it holds that
⋂N

i=1 Bi ⊆ p̂roj X (
⋂N

i=1 Bi ) in accordance with relations (1) and (2), it
follows thatAA ∩⋂N

i=1Gi ⊆ B in accordancewithDefinition 3. In accordancewith Sect. 2.1
and Proposition 1, this and due to the fact that Definition 3 and condition (iii) of Definition 10
imply that neither AA nor B can constrain any non-empty subset of

⋃N
i=1 Xi \ X , it holds

that AA ∩ p̂roj
Ξ\(⋃N

i=1 Xi \X)
(
⋂N

i=1Gi ) ⊆ B. This and condition (iv) of Definition 10 imply

that AA ∩ G ⊆ B.
Since the set of elements {(Xi ,Bi )}N

i=1 was chosen arbitrarily, it holds that the composition
of each set of elements {(Xi ,Bi )}N

i=1 onto X is such that relationsAA ∩B ⊆ G andAA ∩G ⊆
B hold, if each element (Xi ,Bi ) is such that AA i ∩ Bi ⊆ Gi and AA i ∩ Gi ⊆ Bi hold. This
means that (C, {Ci }N

i=1) is proper in accordance with Definition 8, which completes the proof.
�

References

1. Meyer B (1992) Applying “design by contract”. IEEE Comput 25:40–51
2. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580
3. Benveniste A et al (2008) Multiple viewpoint contract-based specification and design. In: Boer FS et al

(eds) Formal methods for components and object. Springer, Berlin, pp 200–225
4. Benveniste A, Caillaud B, Passerone R (2009) Multi-viewpoint state machines for rich component

models. In: Nicolescu G, Mosterman P (eds) Model-based design for embedded systems. Taylor &
Francis, Boca Raton, pp 487–518

5. Sangiovanni-Vincentelli A L, Damm W, Passerone R (2012) Taming Dr. Frankenstein: contract-based
design for cyber-physical systems. Eur J Control 18(3):217–238

6. SPEEDS (2006–2009) SPEculative and exploratory design in systems engineering. http://www.speeds.
eu.com/

7. Henzinger T, Sifakis J (2007) The discipline of embedded systems design. Computer 40(10):32–40
8. Lee E (2008) Cyber physical systems: design challenges. In: 11th IEEE international symposium on

object oriented real-time distributed computing (ISORC), pp 363–369
9. Rawat D B, Rodrigues J J, Stojmenovic I (2015) Cyber-physical systems: from theory to practice. CRC

Press, Boca Raton
10. Baumgart A et al (2011) Amodel-based design methodology with contracts to enhance the development

process of safety-critical systems. In: Software technologies for embedded and ubiquitous systems.
Volume 6399 of Lecture Notes in Computer Science. Springer, Berlin, pp 59–70

11. Damm W, Josko B, Peikenkamp T (2009) Contract based ISO CD 26262 safety analysis. In: SAE
Technical Paper. SAE International. doi:10.4271/2009-01-0754

12. DammW, Hungar H, Josko B, Peikenkamp T, Stierand I (2011) Using contract-based component spec-
ifications for virtual integration testing and architecture design. In: 2011 Design, automation test in
Europe. DATE’11, pp 1–6. doi:10.1109/DATE.2011.5763167

13. Westman J, NybergM (September 2013)A reference example on the specification of safety requirements
using ISO 26262. In: Roy M (ed) Proceedings of workshop DECS (ERCIM/EWICS workshop on
dependable embedded and cyber-physical systems) of the 32nd international conference on computer
safety, reliability and security, France , p NA

14. Westman J, Nyberg M, Törngren M (2013) Structuring safety requirements in ISO 26262 using contract
theory. In: Bitsch F, Guiochet J, Kaniche M (eds) Computer safety, reliability, and security, vol 8153.
Lecture Notes in Computer Science. Springer, Berlin, pp 166–177

123

http://www.speeds.eu.com/
http://www.speeds.eu.com/
http://dx.doi.org/10.4271/2009-01-0754
http://dx.doi.org/10.1109/DATE.2011.5763167


188 Form Methods Syst Des (2018) 52:147–192

15. Westman J, Nyberg M (Jan 2015) Extending contract theory with safety integrity levels. In: IEEE 15th
international symposium on high-assurance systems engineering (HASE) 2015. Springer, Berlin

16. Cheng BHC, Atlee JM (2007) Research directions in requirements engineering. In: Future of software
engineering, 2007. FOSE ’07. IEEE Computer Society, Washington, DC, pp 285–303. doi:10.1109/
FOSE.2007.17

17. Hull MEC, Jackson K, Dick J (eds) (2011) Requirements engineering, 3rd edn. Springer, New York
18. Zave P, Jackson M (1997) Four dark corners of requirements engineering. ACM Trans Softw Eng

Methodol 6(1):1–30
19. Fritzson P (2011) Introduction to modeling and simulation of technical and physical systems with

Modelica. Wiley, New York
20. Fritzson P, Engelson V (1998) Modelica—a unified object-oriented language for system modeling and

simulation. In: Jul E (ed) ECOO’98—object-oriented programming, vol 1445. Lecture Notes in Com-
puter Science. Springer, Berlin, pp 67–90

21. Fritzson P (2014) Principles of object-oriented modeling and simulation with modelica 3.3: a cyber-
physical approach. Wiley, New York

22. vanSchouwenAJ, ParnasDL,Madey J (Jan 1993)Documentation of requirements for computer systems.
In: [1993] Proceedings of the IEEE international symposium on requirements engineering, pp 198–207

23. ParnasDL,Madey J (1995) Functional documents for computer systems. Sci Comput Program25(1):41–
61

24. Liang F et al (2012) Model-based requirement verification : a case study. In: Proceedings of the 9th
international Modelica conference, pp 263–268

25. SchamaiWet al (2009) Towards unified systemmodeling and simulationwithModelicaML:modeling of
executable behavior using graphical notations. In: 7th Modelica conference 2009, University Electronic
Press

26. Boulanger J-L, Dao VQ (July 2008) Requirements engineering in a model-based methodology for
embedded automotive software. In: IEEE international conference on research, innovation and vision
for the future, 2008. RIVF 2008, pp 263–268

27. Friedenthal S, Moore A, Steiner R (2008) A practical guide to SysML: systems modeling language.
Morgan Kaufmann Publishers Inc., San Francisco

28. IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems
(2010)

29. ISO 26262: ”Road vehicles-Functional safety” (2011)
30. Izosimov V, Ingelsson U, Wallin A (2012) Requirement decomposition and testability in development

of safety-critical automotive components. In: Ortmeier F, Daniel P (eds) Computer safety, reliability,
and security, vol 7612. Lecture Notes in Computer Science. Springer, Berlin, pp 74–86

31. de Roever W, Langmaack H, Pnueli A (1998) Compositionality: the significant difference. Springer,
New York

32. Hooman J, de Roever WP (1986) The quest goes on: a survey of proofsystems for partial correctness
of CSP. In: de Bakker JW, de Roever WP, Rozenberg G (eds) Current trends in concurrency, overviews
and tutorials. Springer, Berlin, pp 343–395

33. BenvenisteA et al (November 2012)Contracts for systemdesign. Rapport de rechercheRR-8147, INRIA
34. Abadi M, Lamport L (1993) Composing specifications. ACM Trans Program Lang Syst 15(1):73–132
35. Cimatti A, Tonetta S (2015)Contracts-refinement proof system for component-based embedded systems.

Sci Comput Program 97(Part 3):333–348. Object-Oriented Programming and Systems (OOPS 2010)
Modeling and Analysis of Compositional Software (papers from fEUROMICROg SEAA’12)

36. Negulescu R (2000) Process spaces. In: Proceedings of the 11th international conference on concurrency
theory. CONCUR ’00. Springer, London, pp 199–213

37. DelahayeB, CaillaudB, LegayA (2011) Probabilistic contracts: a compositional reasoningmethodology
for the design of systems with stochastic and/or non-deterministic aspects. Form. Methods Syst. Des.
38(1):1–32

38. Sun X et al (July 2009) Contract-based system-level composition of analog circuits. In: Design automa-
tion conference, 2009. DAC ’09. 46th ACM/IEEE, pp 605–610

39. Quinton S, Graf S (Nov. 2008) Contract-based verification of hierarchical systems of components. In:
Sixth IEEE international conference on software engineering and formal methods, 2008. SEFM ’08, pp
377–381

40. Back R-J, von Wright J (2000) Contracts, games, and refinement. Inf Comput 156(1–2):25–45
41. Goessler G, Raclet J-B (2009)Modal contracts for component-based design. In: Proceedings of the 2009

7th IEEE international conference on software engineering and formalmethods. SEFM ’09,Washington,
DC, USA. IEEE Computer Society, pp 295–303

123

http://dx.doi.org/10.1109/FOSE.2007.17
http://dx.doi.org/10.1109/FOSE.2007.17


Form Methods Syst Des (2018) 52:147–192 189

42. Goessler G, Xu D, Girault A (2012) Probabilistic contracts for component-based design. FormMethods
Syst Des 41(2):211–231

43. BroyM (2011) Towards a theory of architectural contracts: schemes and patterns of assumption/promise
based system specification. In: Broy M, Leuxner C, Hoare T (eds) Software and systems safety—
specification and verification. NATO Science for Peace and Security Series—D: information and
communication security, vol 30. IOP Press, Amsterdam, pp 33–87

44. Bauer S et al (2012) Moving from specifications to contracts in component-based design. In: Lara J,
Zisman A (eds) Fundamental approaches to software Engineering, vol 7212. Lecter Notes in Computer
Science. Springer, Berlin, pp 43–58

45. Bauer SS, Hennicker R, Legay A (2014) A meta-theory for component interfaces with contracts on
ports. Sci Comput Program 91:70–89

46. LeTTHet al (2015)A tag contract framework formodeling heterogeneous systems. Sci Comput Program
115:225–246

47. Maier P (2001) A set-theoretic framework for assume-guarantee reasoning. In: Orejas F, Spirakis P, van
Leeuwen J (eds) Automata, languages and programming, vol 2076. Lecture Notes in Computer Science.
Springer, Berlin, pp 821–834

48. Mcmillan KL (1999) Circular compositional reasoning about liveness. In: Advances in hardware design
and verification: IFIP WG10.5 international conference on correct hardware design and verification
methods (CHARME 99), vol 1703 of Lecture Notes in Computer Science. Springer, Berlin, pp 342–345

49. Abadi M, Lamport L (1995) Conjoining specifications. ACM Trans Program Lang Syst 17(3):507–535
50. Misra J, Chandy K (1981) Proofs of networks of processes. IEEE Trans Softw Eng SE–7(4):417–426
51. Cau A, Collette P (1996) Parallel composition of assumption-commitment specifications. Acta Inf

33(2):153–176
52. Xu Q, Cau A, Collette P (1994) On unifying assumption-commitment style proof rules for concurrency.

In: Jonsson B, Parrow J (eds) CONCUR’94: concurrency theory, vol 836. Lecture Notes in Computer
Science. Springer, Berlin, pp 267–282

53. Viswanathan M, Viswanathan R (2001) Foundations for circular compositional reasoning. In: Orejas
F, Spirakis P, van Leeuwen J (eds) Automata, languages and programming, vol 2076. Lecture Notes in
Computer Science. Springer, Berlin, pp 835–847

54. Tsay Y-K (2000) Compositional verification in linear-time temporal logic. In: Tiuryn J (ed) Foundations
of software science and computation structures, vol 1784. Lecture Notes in Computer Science. Springer,
Berlin, pp 344–358

55. Amla N et al (2003) Abstract patterns of compositional reasoning. In: Amadio R, Lugiez D (eds)
CONCUR 2003–concurrency theory, vol 2761. Lecture Notes in Computer Science. Springer, Berlin,
pp 431–445

56. Chilton C, Jonsson B, KwiatkowskaM (2014) An algebraic theory of interface automata. Theor Comput
Sci 549:146–174

57. Tripakis S et al (2011) A theory of synchronous relational interfaces. ACM Trans Program Lang Syst
33(4):14:1–14:41

58. Alur R, Henzinger T (1999) Reactive modules. Form Methods Syst Des 15(1):7–48
59. Grumberg O, Long DE (1994) Model checking and modular verification. ACM Trans Program Lang

Syst 16(3):843–871
60. Davis M (1961) Infinite games with perfect information. University of California, Berkeley
61. Dill DL (1988) Trace theory for automatic hierarchical verification of speed-independent circuits. In:

Proceedings of the fifth MIT conference on Advanced research in VLSI. MIT Press, Cambridge, pp
51–65

62. Wolf ES (1996) Hierarchical models of synchronous circuits for formal verification and substitution.
PhD thesis, Stanford University, Stanford, CA, USA UMI Order No. GAX96-12052

63. Brookes SD, Hoare CAR, Roscoe AW (1984) A theory of communicating sequential processes. J ACM
31(3):560–599

64. Westman J, Nyberg M (2014) Environment-centric contracts for design of cyber-physical systems. In:
Dingel J et al (eds) Model-driven engineering languages and systems. Volume 8767 Lecture Notes in
Computer Science, vol 8767. Springer, Berlin, pp 218–234

65. Simko G et al (2014) Towards a theory for cyber-physical systems modeling. In: Proceedings of the 4th
ACM SIGBED international workshop on design, modeling, and evaluation of cyber-physical systems.
CyPhy ’14. ACM, New York, pp 56–61

66. Lamport L (1989) A simple approach to specifying concurrent systems. Commun ACM 32(1):32–45
67. Abadi M, Lamport L (1991) The existence of refinement mappings. Theor Comput Sci 82(2):253–284
68. Josko B, Ma Q, Metzner A (01 2008) Designing embedded systems using heterogeneous rich compo-

nents. In: Proceedings of the INCOSE international symposium 2008

123



190 Form Methods Syst Des (2018) 52:147–192

69. DammW (June 2005) Controlling speculative design processes using rich component models. In: . Fifth
international conference on application of concurrency to system design, 2005. ACSD 2005, pp 118–119

70. Westman J, Nyberg M, Gustavsson J, Gurov D (2017) Formal architecture modeling of sequential non-
recursive C programs. Sci Comput Program 146:2–27

71. Gacek A et al (2015) Towards realizability checking of contracts using theories. In: Havelund K, Holz-
mann G, Joshi (eds) NASA formal methods. Volume 9058 of Lecture Notes in Computer Science.
Springer, Berlin, pp 173–187

72. Le TTH, Passerone R (Oct 2014) Refinement-based synthesis of correct contract model decompositions.
In: 2014 Twelfth ACM/IEEE international conference on formal methods and models for Codesign
(MEMOCODE), pp 134–143

73. de Roever W-P (1998) The need for compositional proof systems: a survey. In: de Roever W-P, Lang-
maack H, Pnueli A (eds) Compositionality: the significant difference, vol 1536. Lecture Notes in
Computer Science. Springer, Berlin, pp 1–22

74. Yu E (Jan 1997) Towards modelling and reasoning support for early-phase requirements engineering. In:
Proceedings of the third IEEE international symposium on requirements engineering, 1997, pp 226–235

75. van Lamsweerde A, Letier E (2004) From object orientation to goal orientation: a paradigm shift for
requirements engineering. In: Wirsing M, Knapp A, Balsamo S (eds) Radical innovations of software
and systems engineering in the future, vol 2941. Lecture Notes in Computer Science. Springer, Berlin,
pp 325–340

76. Lapouchnian A (205) Goal-oriented requirements engineering: an overview of the current research.
Technical report, University of Toronto

77. Jackson M (1995) The world and the machine. In: Proceedings of the 17th international conference on
software engineering. ICSE ’95. ACM, New York, pp 283–292

78. Jackson M (1995) Software requirements and specifications: a lexicon of practice principles and preju-
dices. ACM Press/Addison-Wesley Publishing Co., New York

79. Parnas DL (1995) Functional documents for computer systems. Sci Comput Program 25:41–61
80. Nyberg M (Oct 2013) Failure propagation modeling for safety analysis using causal Bayesian networks.

In: 2013 Conference on control and fault-tolerant systems (SysTol), pp 91–97
81. Nyberg M, Westman J (Sept 2015) failure propagation modeling based on contracts theory. In: Depend-

able computing conference (EDCC), 2015 Eleventh European, pp 108–119
82. Namjoshi KS, Trefler RJ (2010) On the completeness of compositional reasoning methods. ACM Trans

Comput Logic 11(3):1–22
83. Maier P (2003) compositional circular assume-guarantee rules cannot be sound and complete. In: Gordon

A (ed) Foundations of software science and computation structures, vol 2620. LectureNotes in Computer
Science. Springer, Berlin, pp 343–357

84. Doyen L et al (2008) Interface theories with component reuse. In: Proceedings of the 8th ACM interna-
tional conference on embedded software. EMSOFT ’08. ACM, New York, pp 79–88

85. Giese H (2000) Contract-based component system design. In: Thirty-third annual Hawaii international
conference on system sciences (HICSS-33). IEEE Press, Maui

86. Sun X (May 2011) Compositional design of analog systems using contracts. PhD thesis, EECS Depart-
ment, University of California, Berkeley

87. Bliudze S, Sifakis J (2007) The algebra of connectors: structuring interaction in BIP. In: Proceedings
of the 7th ACM and IEEE international conference on embedded software. EMSOFT ’07. ACM, New
York, pp 11–20

88. Back R-JJ, Akademi A, Wright JV (1998) Refinement calculus: a systematic introduction, 1st edn.
Springer, New York

89. Graf S, Quinton S (2007) Contracts for BIP: hierarchical interaction models for compositional veri-
fication. In: Proceedings of the 27th IFIP WG 6.1 international conference on formal techniques for
networked and distributed systems. FORTE ’07. Springer, Berlin, pp 1–18

90. Cimatti A, Dorigatti M, Tonetta S (Nov 2013) OCRA: a tool for checking the refinement of temporal
contracts. In: 2013 IEEE/ACM28th international conference on automated software engineering (ASE),
pp 702–705

91. Derler P et al (2013)Cyber-physical systemdesign contracts. In: ICCPS ’13:ACM/IEEE4th international
conference on cyber-physical systems

92. Törngren M et al (Aug 2012) Design contracts for cyber-physical systems: making timing assumptions
explicit. Technical Report UCB/EECS-2012-191, EECSDepartment, University of California, Berkeley

93. Ruchkin I et al. (2014) Contract-based integration of cyber-physical analyses. In: Proceedings of the
14th international conference on embedded software. EMSOFT ’14. ACM, New York, pp 23:1–23:10

123



Form Methods Syst Des (2018) 52:147–192 191

94. Bate I, Hawkins R, McDermid J (2003) A contract-based approach to designing safe systems. In:
Proceedings of the 8th Australian workshop on safety critical system and software, vol 33. SCS ’03,
Australian Computer Society, Inc., pp 25–36

95. Arts T, Dorigatti M, Tonetta S (2014) Making implicit safety requirements explicit. In: Bondavalli A,
Di Giandomenico F (eds) Computer safety, reliability, and security. Volume 8666 of Lecture Notes in
Computer Science. Springer, Berlin, pp 81–92

96. Soderberg A, Johansson R (Nov 2013) Safety contract based design of software components. In: 2013
IEEE international symposium on software reliability engineering workshops (ISSREW), pp 365–370

97. Soderberg A, Vedder B (Nov 2012) Composable safety-critical systems based on pre-certified software
components. In: 2012 IEEE 23rd international symposium on software reliability engineeringworkshops
(ISSREW), pp 343–348

98. Larsen KG (1990) Modal specifications. In: Sifakis J (ed) automatic verification methods for finite state
systems, vol 407. Lecture Notes in Computer Science. Springer, Berlin, pp 232–246

99. David A et al (2010) Timed I/O automata: a complete specification theory for real-time systems. In:
Proceedings of the 13th ACM international conference on hybrid systems: computation and control.
HSCC ’10. ACM, New York, pp 91–100

100. Raclet J-B et al (2011)Amodal interface theory for component-based design. Fundam Inf 108(1–2):119–
149

101. de Alfaro L, Henzinger TA (2001) Interface automata. SIGSOFT Softw Eng Notes 26(5):109–120
102. Lynch NA, Tuttle MR (1989) An introduction to input/output automata. CWI Q 2:219–246
103. Chilton C, Jonsson B, Kwiatkowska M (2014) Compositional assumeguarantee reasoning for

input/output component theories. Sci Comput Program 91(Part A):115–137. Special Issue on Formal
Aspects of Component Software (Selected Papers from FACS12)

104. Jones CB (September 1983) Specification and design of (parallel) programs. In: Mason REA (ed)
Information processing 83. Volume 9 of IFIP Congress Series. Paris, France, IFIP, North-Holland, pp
321–332

105. Jones CB (1983) Tentative steps toward a development method for interfering programs. ACM Trans
Program Lang Syst 5(4):596–619

106. Floyd RW (1967) Assigning meanings to programs. In: Schwartz JT (ed) Mathematical aspects of com-
puter science. Volume 19 of proceedings of symposia in applied mathematics. American Mathematical
Society, Providence, pp 19–32

107. Dijkstra EW (1975) Guarded commands, nondeterminacy and formal derivation of programs. Commun
ACM 18(8):453–457

108. Owicki S, Gries D (1976) An axiomatic proof technique for parallel programs I. Acta Inf 6(4):319–340
109. Ashcroft EA (1975) Proving assertions about parallel programs. J Comput Syst Sci 10(1):110–135
110. Lamport L (1977) Proving the correctness of multiprocess programs. IEEE Trans Softw Eng 3(2):125–

143
111. Pnueli A (1985) In transition from global to modular temporal reasoning about programs. In: Apt K (ed)

Logics and models of concurrent systems, vol 13. NATO ASI Series. Springer, Berlin, pp 123–144
112. Alur R et al (1998) MOCHA: modularity in model checking. In: Hu A, Vardi M (eds) Computer aided

verification, vol 1427. Lecture Notes in Computer Science. Springer, Berlin, pp 521–525
113. Gurov D, Huisman M, Sprenger C (2008) Compositional verification of sequential programs with pro-

cedures. Inf Comput 206(7):840–868
114. Kupferman O, Vardi MY (2000) An automata-theoretic approach to modular model checking. ACM

Trans Program Lang Syst 22(1):87–128
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