1,428 research outputs found
Recommended from our members
Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI
International audienceA model of atmospheric composition and climate has been developed at the NASA Goddard Institute for Space Studies (GISS) that includes composition seamlessly from the surface to the lower mesosphere. The model is able to capture many features of the observed magnitude, distribution, and seasonal cycle of trace species. The simulation is especially realistic in the troposphere. In the stratosphere, high latitude regions show substantial biases during period when transport governs the distribution as meridional mixing is too rapid in this model version. In other regions, including the extrapolar tropopause region that dominates radiative forcing (RF) by ozone, stratospheric gases are generally well-simulated. The model's stratosphere-troposphere exchange (STE) agrees well with values inferred from observations for both the global mean flux and the ratio of Northern (NH) to Southern Hemisphere (SH) downward fluxes. Simulations of preindustrial (PI) to present-day (PD) changes show tropospheric ozone burden increases of 11% while the stratospheric burden decreases by 18%. The resulting tropopause RF values are ?0.06 W/m2 from stratospheric ozone and 0.40 W/m2 from tropospheric ozone. Global mean mass-weighted OH decreases by 16% from the PI to the PD. STE of ozone also decreased substantially during this time, by 14%. Comparison of the PD with a simulation using 1979 pre-ozone hole conditions for the stratosphere shows a much larger downward flux of ozone into the troposphere in 1979, resulting in a substantially greater tropospheric ozone burden than that seen in the PD run. This implies that reduced STE due to stratospheric ozone depletion may have offset as much as 2/3 of the tropospheric ozone burden increase from PI to PD. However, the model overestimates the downward flux of ozone at high Southern latitudes, so this estimate is likely an upper limit. In the future, the tropospheric ozone burden increases by 101% in 2100 for the A2 scenario including both emissions and climate changes. The primary reason is enhanced STE, which increases by 124% (168% in the SH extratropics, and 114% in the NH extratropics). Climate plays a minimal role in the SH increases, but contributes 38% in the NH. Chemistry and dry deposition both change so as to reduce tropospheric ozone, partially in compensation for the enhanced STE, but the increased ozone influx dominates the burden changes. The net RF due to projected ozone changes is 0.8 W/m2 for A2. The influence of climate change alone is ?0.2 W/m2, making it a substantial contributor to the net RF. The tropospheric oxidation capacity increases seven percent in the full A2 simulation, and 36% due to A2 climate change alone
Resumming the color-octet contribution to e+ e- -> J/psi + X
Recent observations of the spectrum of J/psi produced in e+ e- collisions at
the Upsilon(4S) resonance are in conflict with fixed-order calculations using
the Non-Relativistic QCD (NRQCD) effective field theory. One problem is that
leading order color-octet mechanisms predict an enhancement of the cross
section for J/psi with maximal energy that is not observed in the data.
However, in this region of phase space large perturbative corrections (Sudakov
logarithms) as well as enhanced nonperturbative effects are important. In this
paper we use the newly developed Soft-Collinear Effective Theory (SCET) to
systematically include these effects. We find that these corrections
significantly broaden the color-octet contribution to the J/psi spectrum. Our
calculation employs a one-stage renormalization group evolution rather than the
two-stage evolution used in previous SCET calculations. We give a simple
argument for why the two methods yield identical results to lowest order in the
SCET power counting.Comment: 27 pages, 7 figure
Nuclear shadowing at low Q^2
We re-examine the role of vector meson dominance in nuclear shadowing at low
Q^2. We find that models which incorporate both vector meson and partonic
mechanisms are consistent with both the magnitude and the Q^2 slope of the
shadowing data.Comment: 7 pages, 2 figures; to appear in Phys. Rev.
Measuring the Temperature of Hot Nuclear Fragments
A new thermometer based on fragment momentum fluctuations is presented. This
thermometer exhibited residual contamination from the collective motion of the
fragments along the beam axis. For this reason, the transverse direction has
been explored. Additionally, a mass dependence was observed for this
thermometer. This mass dependence may be the result of the Fermi momentum of
nucleons or the different properties of the fragments (binding energy, spin
etc..) which might be more sensitive to different densities and temperatures of
the exploding fragments. We expect some of these aspects to be smaller for
protons (and/or neutrons); consequently, the proton transverse momentum
fluctuations were used to investigate the temperature dependence of the source
M1 Resonances in Unstable Magic Nuclei
Within a microscopic approach which takes into account RPA configurations,
the single-particle continuum and more complex
configurations isoscalar and isovector M1 excitations for the unstable nuclei
Ni and Sn are calculated. For comparison, the
experimentally known M1 excitations in Ca and Pb have also been
calculated. In the latter nuclei good agreement in the centroid energy, the
total transition strength and the resonance width is obtained. With the same
parameters we predict the magnetic excitations for the unstable nuclei. The
strength is sufficiently concentrated to be measurable in radioactive beam
experiments. New features are found for the very neutron rich nucleus Ni
and the neutron deficient nucleus Sn.Comment: 17 pages (LATEX), 12 figures (available from the authors),
KFA-IKP(TH)-1993-0
Optical Properties of MFe_4P_12 filled skutterudites
Infrared reflectance spectroscopy measurements were made on four members of
the MFe_4P_12 family of filled skutterudites, with M=La, Th, Ce and U. In
progressing from M=La to U the system undergoes a metal-insulator transition.
It is shown that, although the filling atom induces such dramatic changes in
the transport properties of the system, it has only a small effect on lattice
dynamics. We discuss this property of the compounds in the context of their
possible thermoelectric applications.Comment: Manuscript in ReVTeX format, 7 figures in PostScirpt forma
The role of occupied d states in the relaxation of hot electrons in Au
We present first-principles calculations of electron-electron scattering
rates of low-energy electrons in Au. Our full band-structure calculations
indicate that a major contribution from occupied d states participating in the
screening of electron-electron interactions yields lifetimes of electrons in Au
with energies of above the Fermi level that are larger than
those of electrons in a free-electron gas by a factor of . This
prediction is in agreement with a recent experimental study of ultrafast
electron dynamics in Au(111) films (J. Cao {\it et al}, Phys. Rev. B {\bf 58},
10948 (1998)), where electron transport has been shown to play a minor role in
the measured lifetimes of hot electrons in this material.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
Quantum Mechanics of the Vacuum State in Two-Dimensional QCD with Adjoint Fermions
A study of two-dimensional QCD on a spatial circle with Majorana fermions in
the adjoint representation of the gauge groups SU(2) and SU(3) has been
performed. The main emphasis is put on the symmetry properties related to the
homotopically non-trivial gauge transformations and the discrete axial symmetry
of this model. Within a gauge fixed canonical framework, the delicate interplay
of topology on the one hand and Jacobians and boundary conditions arising in
the course of resolving Gauss's law on the other hand is exhibited. As a
result, a consistent description of the residual gauge symmetry (for
SU(N)) and the ``axial anomaly" emerges. For illustrative purposes, the vacuum
of the model is determined analytically in the limit of a small circle. There,
the Born-Oppenheimer approximation is justified and reduces the vacuum problem
to simple quantum mechanics. The issue of fermion condensates is addressed and
residual discrepancies with other approaches are pointed out.Comment: 44 pages; for hardcopies of figures, contact
[email protected]
Numerical properties of isotrivial fibrations
In this paper we investigate the numerical properties of relatively minimal
isotrivial fibrations \varphi \colon X \lr C, where is a smooth,
projective surface and is a curve. In particular we prove that, if and is neither ruled nor isomorphic to a quasi-bundle, then K_X^2
\leq 8 \chi(\mO_X)-2; this inequality is sharp and if equality holds then
is a minimal surface of general type whose canonical model has precisely two
ordinary double points as singularities. Under the further assumption that
is ample, we obtain K_X^2 \leq 8 \chi(\mO_X)-5 and the inequality is
also sharp. This improves previous results of Serrano and Tan.Comment: 30 pages. Final version, to appear in Geometriae Dedicat
Attitudes toward westbound refugees in the East German press
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67107/2/10.1177_002200277001400303.pd
- …