42,217 research outputs found
Shape analysis on homogeneous spaces: a generalised SRVT framework
Shape analysis is ubiquitous in problems of pattern and object recognition
and has developed considerably in the last decade. The use of shapes is natural
in applications where one wants to compare curves independently of their
parametrisation. One computationally efficient approach to shape analysis is
based on the Square Root Velocity Transform (SRVT). In this paper we propose a
generalised SRVT framework for shapes on homogeneous manifolds. The method
opens up for a variety of possibilities based on different choices of Lie group
action and giving rise to different Riemannian metrics.Comment: 28 pages; 4 figures, 30 subfigures; notes for proceedings of the Abel
Symposium 2016: "Computation and Combinatorics in Dynamics, Stochastics and
Control". v3: amended the text to improve readability and clarify some
points; updated and added some references; added pseudocode for the dynamic
programming algorithm used. The main results remain unchange
Relation of agronomic and multispectral reflectance characteristics of spring wheat canopies
The relationships between crop canopy variables such as leaf area index (LAI) and their multispectral reflectance properties were investigated along with the potential for estimating canopy variables from remotely sensed reflectance measurements. Reflectance spectra over the 0.4 to 2.5 micron wavelength range were acquired during each of the major development stages of spring wheat canopies at Williston, North Dakota, during three seasons. Treatments included planting date, N fertilization, cultivar, and soil moisture. Agronomic measurements included development stage, biomass, LAI, and percent soil cover. High correlations were found between reflectance and percent cover, LAI, and biomass. A near infrared wavelength band, 0.76 to 0.90 microns, was most important in explaining variation in LAI and percent cover, while a middle infrared band, 2.08 to 2.35 microns, explained the most variation in biomass and plant water content. Transformations, including the near infrared/red reflectance ratio and greenness index, were also highly correlated to canopy variables. The relationship of canopy variables to reflectance decreased as the crop began to ripen. the canopy variables could be accurately predicted using measurements from three to five wavelength bands. The wavelength bands proposed for the thematic mapper sensor were more strongly related to the canopy variables than the LANDSAT MSS bands
Evaluation of a segment-based LANDSAT full-frame approach to corp area estimation
As the registration of LANDSAT full frames enters the realm of current technology, sampling methods should be examined which utilize other than the segment data used for LACIE. The effect of separating the functions of sampling for training and sampling for area estimation. The frame selected for analysis was acquired over north central Iowa on August 9, 1978. A stratification of he full-frame was defined. Training data came from segments within the frame. Two classification and estimation procedures were compared: statistics developed on one segment were used to classify that segment, and pooled statistics from the segments were used to classify a systematic sample of pixels. Comparisons to USDA/ESCS estimates illustrate that the full-frame sampling approach can provide accurate and precise area estimates
Performance Models for Data Transfers: A Case Study with Molecular Chemistry Kernels
With increasing complexity of hardwares, systems with different memory nodes
are ubiquitous in High Performance Computing (HPC). It is paramount to develop
strategies to overlap the data transfers between memory nodes with computations
in order to exploit the full potential of these systems. In this article, we
consider the problem of deciding the order of data transfers between two memory
nodes for a set of independent tasks with the objective to minimize the
makespan. We prove that with limited memory capacity, obtaining the optimal
order of data transfers is a NP-complete problem. We propose several heuristics
for this problem and provide details about their favorable situations. We
present an analysis of our heuristics on traces, obtained by running 2
molecular chemistry kernels, namely, Hartree-Fock (HF) and Coupled Cluster
Single Double (CCSD) on 10 nodes of an HPC system. Our results show that some
of our heuristics achieve significant overlap for moderate memory capacities
and are very close to the lower bound of makespan
RPA quasi-elastic responses in infinite and finite nuclear systems
Quasi-elastic responses in nuclear matter and in C and Ca
nuclei are calculated in ring approximation to investigate the finite size
effects on the electromagnetic quasi-elastic responses. A method to simulate
these effects in infinite systems calculations is proposed. The sensitivity of
the results to the various terms of the residual interaction is studied. The
results of nuclear matter RPA calculations are compared with those obtained in
ring approximation to evidence the importance of the exchange terms.Comment: 14 pages, 8 figure
Determination of the optimal level for combining area and yield estimates
Several levels of obtaining both area and yield estimates of corn and soybeans in Iowa were considered: county, refined strata, refined/split strata, crop reporting district, and state. Using the CCEA model form and smoothed weather data, regression coefficients at each level were derived to compute yield and its variance. Variances were also computed with stratum level. The variance of the yield estimates was largest at the state and smallest at the county level for both crops. The refined strata had somewhat larger variances than those associated with the refined/split strata and CRD. For production estimates, the difference in standard deviations among levels was not large for corn, but for soybeans the standard deviation at the state level was more than 50% greater than for the other levels. The refined strata had the smallest standard deviations. The county level was not considered in evaluation of production estimates due to lack of county area variances
Sampling for area estimation: A comparison of full-frame sampling with the sample segment approach
The effect of sampling on the accuracy (precision and bias) of crop area estimates made from classifications of LANDSAT MSS data was investigated. Full-frame classifications of wheat and non-wheat for eighty counties in Kansas were repetitively sampled to simulate alternative sampling plants. Four sampling schemes involving different numbers of samples and different size sampling units were evaluated. The precision of the wheat area estimates increased as the segment size decreased and the number of segments was increased. Although the average bias associated with the various sampling schemes was not significantly different, the maximum absolute bias was directly related to sampling unit size
Reducing the critical switching current in nanoscale spin valves
The current induced magnetization reversal in nanoscale spin valves is a
potential alternative to magnetic field switching in magnetic memory devices.
We show that the critical switching current can be decreased by an order of
magnitude by strategically distributing the resistances in the magnetically
active region of the spin valve. In addition, we simulate full switching curves
and predict a new precessional state.Comment: mistake corrected, references added, 4 page
Large magnetoresistance in the antiferromagnetic semi-metal NdSb
There has been considerable interest in topological semi-metals that exhibit
extreme magnetoresistance (XMR). These have included materials lacking
inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2.
However, it was reported recently that LaSb and LaBi also exhibit XMR, even
though the rock-salt structure of these materials has inversion symmetry, and
the band-structure calculations do not show a Dirac dispersion in the bulk.
Here, we present magnetoresistance and specific heat measurements on NdSb,
which is isostructural with LaSb. NdSb has an antiferromagnetic groundstate,
and in analogy with the lanthanum monopnictides, is expected to be a
topologically non-trivial semi-metal. We show that NdSb has an XMR of 10^4 %,
even within the AFM state, illustrating that XMR can occur independently of the
absence of time reversal symmetry breaking in zero magnetic field. The
persistence of XMR in a magnetic system offers promise of new functionality
when combining topological matter with electronic correlations. We also find
that in an applied magnetic field below the Neel temperature there is a first
order transition, consistent with evidence from previous neutron scattering
work.Comment: 5 pages, 6 figure
- …