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ABSTRACT

In distributed memory systems, it is paramount to develop strate-

gies to overlap the data transfers between memory nodes with the

computations in order to exploit their full potential. In this paper,

we consider the problem of determining the order of data transfers

between two memory nodes for a set of independent tasks with the

objective of minimizing the makespan. We prove that, with limited

memory capacity, the problem of obtaining the optimal data transfer

order is NP-complete. We propose several heuristics to determine

this order and discuss the conditions that might be favorable to

different heuristics. We analyze our heuristics on traces obtained by

running two molecular chemistry kernels, namely, Hartree–Fock

(HF) and Coupled Cluster Singles Doubles (CCSD), on 10 nodes

of an HPC system. Our results show that some of our heuristics

achieve significant overlap for moderate memory capacities and

resulting in makespans that are very close to the lower bound.

CCS CONCEPTS

• Computer systems organization→ High Performance Com-

puting ; • Computing Methodologies →Modeling and Simula-

tion; • General → Performance.
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1 INTRODUCTION

With the advent of multicore, and the use of accelerators, it is no-

toriously cumbersome to exploit the full capability of a machine.

Indeed, there are several challenges that come into picture. First, ev-

ery architecture provides its own efficacy and interface. Therefore,
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a steep learning curve is required for programmers to effectively uti-

lize all resources. Second, scheduling is a well known NP-complete

optimization problem, and hybrid and distributed resources make

this problem harder (we refer Brucker and Knust [9] for a survey

on the complexity of scheduling problems and Bleuse et al. [7] for

a recent survey in the case of hybrid nodes). Third, due to shared

buses and parallel resources, it is challenging to obtain a precise

model based on prediction of computation and communication

times. Fourth, the number of architectures has increased drastically

in recent years, making it almost impossible to develop hand-tuned

optimized code for all these architectures. All these observations led

to the development of different task-based runtime systems. Among

several runtimes, we may cite QUARK [26] and PaRSEC [8] from

ICL, Univ. of Tennessee Knoxville (USA), StarPU [4] from Inria Bor-

deaux (France), Legion [5] from Stanford Univ. (USA), StarSs [10]

from Barcelona Supercomputing Center (Spain), KAAPI [14] from

Inria Grenoble (France). All these runtime systems allow program-

mers to express their algorithms at the abstract level in the form of

direct acyclic graphs (DAG), where vertices represent computations

and edges represent dependencies among them. Sometimes some

static information is also provided along with the DAG, such as

distance to exit (last) node as a priority or affinity of computation

toward resources. The runtime is then responsible for managing

the schedule of computations and communications, data transfer

among different memories, computation-communication overlap,

and load balance.

In the last few decades, we have witnessed a drastic improve-

ment in the hardware to provide higher rate of computation, but

comparatively smaller improvement has been achieved for the rate

of data movement. With extreme-scale computing, supercomputers

face bottlenecks due to the need for large amount of data [3, 27].

Therefore, the HPC community is now focused on avoiding, hiding,

and minimizing communication costs.

Certain applications such as dense linear algebra kernels have

regular structure. Therefore, it is possible to associate priorities to

computations, based on the task graph structure, and to use them

at runtime to make the execution efficient. In irregular applications,

programmers do not know the precise structure of the task graphs

in advance: tasks are added recursively based on certain sentinel

constraints. For such applications, the runtime system sees a set

of tasks and schedules them on processing units of different mem-

ory spaces. It is extremely important for runtimes to decide the

order of data transfers for these scheduled computations so as to

maximize the overlap between computation and communication.

This is the main topic of this paper. We prove that determining
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the order of communications on two memory nodes with the ob-

jective of minimizing the makespan is a NP-complete problem if

the memory of the target node is limited. Our proof is inspired

by [19], which applies a similar technique for 2-machine flowshop

problem with bounded capacity. The main difference between both

approaches is that they consider all tasks have the same occupation

on the second machine and the memory occupation starts when

the processing finishes on the first machine. On the contrary, our

approach is designed for tasks appearing in scientific workloads

whose memory requirements are highly irregular and we consider

that memory is acquired before starting the data transfer on the

communication resource. We propose different runtime strategies

in order to maximize the computation-communication overlap. We

evaluate our strategies on the context of a cluster of homogeneous

nodes. However, our approach is generic and easily adaptable to

any system that operates on different memory spaces. Here are the

important contributions of this paper:

• NP-completeness proof for the general data-transfer problem

• Different scheduling strategies with the objective to mini-

mize the makespan

• Linear programming formulation of the problem

• Numerous experiments to assess the effectiveness of our

strategies on molecular chemistry kernels

The rest of the paper is organized as follows. Section 2 describes

past work on the computations with limited memory and similar

problems in the literature. In Section 3, we present an algorithm

to obtain the order of data transfers when there is not any mem-

ory capacity restriction. Also, we prove that, in general, the data

transfer problem is NP-complete. In Section 4, we propose several

heuristics and discuss the conditions that might be favorable to

them.Wemainly consider three categories of heuristics: static order

based heuristics, dynamic selection based heuristics, and static or-

der with dynamic correction based heuristics. Sections 5 describes

our experimental setup and we evaluate our proposed heuristics

on two molecular chemistry kernels in Section 6. Our results show

that static order with dynamic correction based heuristics achieve

good performance in most cases. We finally present conclusions

and perspectives in Section 7.

2 RELATED WORK

Historically there has been a great emphasis on the development

of parallel algorithms and minimizing the complexity of computa-

tions. As the number of computation cores has increased in recent

years, supercomputers face bottlenecks due to the communication

required by an application. Hence, the focus has shifted toward de-

veloping communication avoiding algorithms, strategies to hiding

communications, and minimizing the data accessed by applica-

tions [27].

The problem of scheduling tasks has been highly studied in the

literature andmany formulations are known to be NP-complete [11].

Many static and dynamic strategies have been proposed and ana-

lyzed for scheduling tasks on heterogeneous resources [1, 6, 24].

There is also a number of studies in the direction of task schedul-

ing with the emphasis on improving locality and minimizing the

communication cost [4, 24]. Stanisic et al. [23] proposed a heuristic

to schedule tasks on a computational resource where most of its

data is available. A similar approach has been adopted by Agullo et

al. for the scheduling of sparse linear algebra kernels [2]. Predari

et al. proposed heuristics to partition the task graph across a num-

ber of processors such that inter-processor communication can be

minimized [20].

The problem we consider also can be viewed as a flowshop prob-

lem: the communication link can be seen as a processing resource,

and each task needs to first be handled by the communication

link and then by the computational resource. Communication and

computation times of a task can thus be considered as processing

times on different machines. Johnson presented scheduling strate-

gies for 2 and 3-machine flowshop problems with infinite memory

capacity [15]. Two-machine flowshop problem with finite buffer

was proven NP-complete by Papadimitriou and Kanellakis [19], in

which a constraint is imposed on the number of tasks that can await

execution on the second machine.

A number of other studies have focused on scheduling with

limited memory and storage, starting with the work of register al-

location for arithmetic expressions by Sethi and Ulman [22]. Sarkar

et al. worked on the scheduling of graphs of smaller-grain tasks

with limited memory, where each task requires homogeneous data

size [21]. The same work has been extended by Marchal et al. for

task graphs where per-task memory requirements are highly irreg-

ular [17].

3 PROBLEM FORMULATION

To exploit the full potential of a system it may be necessary to exe-

cute tasks on processing units where all of their data does not reside.

A task may require all of its input data in local memory before start-

ing the computation. There may be multiple tasks scheduled on

a processing unit, which require to transfer data from the same

memory node. Ordering data transfers for such tasks is very crucial

for the communication-computation overlap, thus for the overall

performance. In general, order of task execution with input and out-

put data transfers can be viewed as a 3-machine flowshop problem,

where processing time on the first machine is input data transfer

time, processing time on the second machine is task computation

time, and processing time on the third machine is output data trans-

fer time; and the objective is to minimize the total makespan. This

is a well-known NP-complete problem [12].

In many cases, output data to be retrieved after task execution

is much smaller than the input data. It is often the case that future

tasks running on the same memory node require output data of

the past tasks. Therefore, most runtime systems transfer data to

other memory nodes based on the demand – not immediately after

they were produced. It is also possible that all output data can be

stored in a preallocated separate buffer on a memory node. We

do not consider output data explicitly in our analysis and assume

that output data is negligible or stored in a separate buffer for each

task. Thus the problem we consider is more similar to a 2-machine

flowshop problem. We prove that ordering the execution of such

tasks with finite memory capacity is a NP-complete problem:

Problem DT : A set of tasks ST = {T1, · · · ,Tn } is scheduled on a

processing unit P with memory unit M of capacity C . Input data

for tasks of ST reside on another memory unitM ′. COMMi is the

communication time to transfer input data fromM ′ toM for task
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i and COMPi is the computation time of task i on P . We assume

that these tasks do not produce any output data. There can be only

one communication at a time, and P can only process one task at a

time. A task uses an amount of memory inM from the start of its

communication to the end of its computation.

Given L, is there a feasible schedule S for ST such that makespan

of S , µ(S) ≤ L?

Given a schedule, SCOMM(i) and SCOMP(i) represent the start

times of task i on communication and computation resources. A

schedule is feasible if for every time t , the amount of memory

required by all tasks such that SCOMM(i) ≤ t ≤ SCOMP(i)+COMPi
is not more than the memory capacityC . For simplicity, we assume

throughout the paper that tasks require memory only to store their

input data, and thus that the amount of memory required by a

task is proportional to its communication time. Without loss of

generality, we consider in all examples of Sections 3 and 4 that the

memory requirement of a task is equal to its communication time.

We call a task i compute intensive if COMPi ≥ COMMi , and

communication intensive otherwise.

3.1 Special Case: Infinite Memory

When the computational resource has a very large memory, our

problem becomes a classic 2-machine flowshop problem: communi-

cation time is the processing time on the first machine and compu-

tation time is the processing time on the second machine. Johnson’s

algorithm [15] is known to provide an ordering for the tasks which

results in an optimal makespan. This algorithm is rewritten in

Algorithm 1.

Algorithm 1: Johnson’s [15] algorithm (infinite memory

case).

1: Divide ready tasks in two sets S1 and S2. If computation time

of a task T is not less than its communication time, then T is

in S1 otherwise in S2.

2: Sort S1 in queue Q by non-decreasing communication times

3: Sort S2 in queue Q ′ by non-increasing computation times

4: Append Q ′ to Q

5: τCOMM ← 0 {Available time of communication resource}

6: τCOMP ← 0 {Available time of computation resource}

7: while Q , ∅ do

8: Remove a task T from beginning of Q for processing

9: SCOMM(T ) ← τCOMM

10: SCOMP(T ) ←max(SCOMM(T ) +COMMT ,τCOMP)

11: τCOMM ← SCOMM(T ) +COMMT

12: τCOMP ← SCOMP(T ) +COMPT
13: end while

We provide an alternative optimality proof of Algorithm 1 in the

extended version [16].

3.2 Finite Memory

We now consider the general case, in which the memory limit is

a constraint for the schedule. This is related to previous work by

Papadimitriou and Kanellakis [19], inwhich the secondmachine can

only handle a bounded number of tasks. Our problem generalizes

this work to heterogeneous memory consumption among tasks,

with an additional difference: memory usage starts at the beginning

of the first part of a task (instead of at the end of the first part). This

requires us to provide a slightly different NP-completeness proof,

as given below.

Theorem 3.1. Problem DT is NP-complete.

Proof. It is easy to see that the DT belongs in NP: given a

schedule, one can check in linear time that at each start of a com-

munication, the memory constraint is satisfied, and that task starts

computation only after its input data is transferred toM .

To prove NP-hardness, we use a reduction from the well-known

3-Partition NP-complete problem [11]:

Three Partition Problem (3Par): Given a set of 3m integers A =

{a1, · · · ,a3m }, is there a partition ofA intom tripletsTRi = {ai1 ,ai2 ,ai3 },

such that ∀i,ai1 + ai2 + ai3 = b, where b = (1/m)
∑

ai ?

Let us first show that 3Par problem reduces in polynomial

time to problem DT . Suppose that we are given an instance A =

{a1, · · · ,a3m } of 3Par. It is immediately obvious that ai > 1, since

we can always add sufficiently large integers to the ai values and

scale the problem accordingly. This scaling will not affect in any

way the existence of a solution for the instance of 3Par problem.

From such an instance, we define x = max{ai : 1 ≤ i ≤ 3m},

and we construct an instance I of the problem DT with 4m+1 tasks,

whose characteristics are given in Table 1.

Task Communication time Computation time

K0 0 3

K1, · · · ,Km−1 b ′ = b + 6x 3

Km b ′ = b + 6x 0

1 ≤ i ≤ 3m,Ai 1 a′i = ai + 2x

Memory capacity: C = b ′ + 3

Target makespan: L =m(b ′ + 3)

Table 1: Definition of tasks in the reduction from 3Par.

We show that I has a schedule S with makespan at most L if and

only if the original 3Par instance has a solution. Notice that the

sum of communication times and the sum of computation times

are both equal to L, therefore a valid schedule of makespan at most

L has makespan exactly L, with no idle time on both resources. It

indicates that the first task is K0 and the last task is Km .

t

Comp.

Comm. A1,1 A1,2 A1,3

K0

K1

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

K1

3 3b ′

Figure 1: Pattern of feasible schedule S .

If the 3Par instance has a solution, A can be partitioned into

m triplets TRi = {ai1 ,ai2 ,ai3 } such that ∀i,ai1 + ai2 + ai3 = b,

then we can construct a feasible schedule S without idle times

by the pattern depicted in Figure 1. The communications of tasks

in TRi take place during the computation of task Ki−1, and the

computations of tasks in TRi take place during the communication

of task Ki . Since the memory capacity isC = b ′ + 3, all tasks from a

triplet can fit inmemorywith a taskKi , and their computation times

are exactly equal to the communication time of Ki . This schedule

is thus feasible, and has length exactly L.
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We now prove that any feasible schedule of I corresponds to

a valid decomposition of A for 3Par. Indeed, we argue that every

feasible schedule has to consist ofm segments like the one shown

in Figure 1. Each segment provides a triplet {ai1 ,ai2 ,ai3 } such that

ai1 + ai2 + ai3 = b.

Any schedule S of I having no idle time must start with K0. We

first show that no other Ki task can be active with K0, otherwise

we would get idle time on the computation resource. Indeed, the

communication of such a task Ki would end at time at least b ′ >

3 + 6x , but at most two Ai tasks can be computed, and they end at

time at most 3 + 2max{a′i : 1 ≤ i ≤ 3m} = 3 + 6x .

Hence three Ai tasks must follow K0. The memory requirement

of other Ki tasks is b
′ and 2b ′ > C , therefore at any point in the

schedule at most one Ki task can be active. Since the total duration

of all Ki tasks is 3 + (m − 1)(b
′
+ 3) + b ′ = m(b ′ + 3) = L, at each

point in S exactly one Ki task is active.

With these Ki tasks in place, the schedule on the computation

resource containsm slots of length exactly b ′, in which all 3m Ai
tasks must fit without preemption. We thus defineTRi as the set of

tasks which execute during the communication phase of taskKi . At

each point in S , exactly one Ki task is active and the total memory

capacity is b ′+3, henceTRi contains exactly 3Ai tasks. Since S has

no idle time on the computation resource, the total computation

time of tasks in TRi is exactly b
′, and thus ai1 + ai2 + ai3 = b. This

partition is thus a valid solution for the 3Par instance A.

�

This theorem shows that adding a memory constraint to our

problem makes it more difficult, just like it does for limited capacity

2-machine flowshop [19]. One additional difficulty for our problem

is that it may not be optimal to consider the same order on both

machines.

Proposition 3.2. There exists an instance of DT for which in all

optimal schedules, the communication order of tasks is different from

their computation order.

Task Memory Req Comm Time Comp Time

A 0 0 5

B 4 4 3

C 1 1 6

D 3 3 7

E 6 6 0.5

F 7 7 0.5

Table 2: Example instance where ordering on both resources

has to be different.

Proof. Consider the instance described on Table 2, in which

memory capacity isC = 10. Figure 2a shows the best possible sched-

ule when tasks are scheduled in the same order on both resources

(obtained by exhaustive search). On the other hand, Figure 2b shows

another schedule with lower makespan, in which the order is dif-

ferent.

In the infinite memory case, the standard proof that an optimal

schedule exists with the same order on both resources claims that

it is possible to swap two tasks which do not satisfy this property.

On Figure 2, this would mean swapping tasks D and E. But the

t0 5 8 15 21.5 23

A

B

B

D

D

E C

C

F

(a) Optimal schedule with common ordering on both resources

t0 5 8 14 22

A

B

B

C

C

D

D

E F

(b) Schedule with different ordering on both resources

Figure 2: Schedules for the instance of Table 2 with a mem-

ory capacity of 10.

communication of task E can not start earlier because it would not

fit in memory with tasks B and C , and delaying the computation of

task E after task D would delay task F because E and F do not fit

in memory together. We can see that this claim does not hold in

the constrained memory case. �

4 DATA TRANSFER ORDER HEURISTICS

Algorithm 1 presented in Section 3 achieves an optimal makespan

when there is no memory constraint. This optimal value indicates

a lower bound on the makespan of the constrained case. We denote

this value with optimal makespan infinite memory (OMIM). In this

section, we propose different heuristics for the limited memory case,

and we assess their efficiency with respect to OMIM in Section 6.

We classify our heuristics into mainly three categories. In the

first category, the order of all computations and communications

is computed in advance and the same order is followed on both

resources. In the second category, the next task to schedule is dy-

namically chosen based on different criteria. The final category is

based on combining strategies from the first two categories: a static

order is precomputed and corrected dynamically to avoid idle time

caused by memory limitations. In all of our strategies (except linear

programming based strategy), communication and computation

orders of tasks are same.

4.1 Static Ordering

In this class of strategies, we compute the order of processing in

advance based on criteria such as communication time and compu-

tation time. After computing the order, we follow the same sequence

on computation and communication resources and make sure that

the memory constraint is respected at each point in the schedule.

In Algorithm 1, compute intensive tasks are sorted in increas-

ing order of communication times. It allows tasks to utilize the

computation resource maximally and make enough margin on the

communication resource to accommodate more communication

intensive tasks with maximum overlap. Communication intensive

tasks are sorted in decreasing order of computation time, which

allows tasks to utilize the margin created on communication re-

source. Hence, in this section, we obtain the orders by sorting tasks

based on different combinations of communication and computa-

tion times.
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(b) Memory Capacity: 6

Figure 3: Static order heuristic schedules for Table 3.

Task Memory Req Comm Time Comp Time

A 3 3 2

B 1 1 3

C 4 4 4

D 2 2 1

Table 3: A task set for static order schedules.

i) order of optimal strategy infinite memory (OOSIM): This

heuristic uses the order given by Algorithm 1, but respects

the memory constraint at each point in the schedule. Hence

the makespan of this heuristic may be completely different

from OMIM .

ii) increasing order of communication strategy (IOCMS): Tasks

are ordered in non-decreasing order of communication time.

iii) decreasing order of computation strategy (DOCPS): Tasks are

ordered in non-increasing order of computation time.

iv) increasing order of communication plus computation strategy

(IOCCS): Tasks are ordered in non-decreasing order of the

sum of their communication and computation times.

v) decreasing order of communication plus computation strategy

(DOCCS): Tasks are ordered in non-increasing order of the

sum of their communication and computation times.

In order to highlight the different behaviors of these static heuris-

tics, we propose on Table 3 an example instance, and on Figure 3

the corresponding schedules for all these heuristics.

t
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M
R

0 1 6 7 8 11 13 17 23

B

B

D

D

A

A

C

C

t

SC
M
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A

C

C

D

D

t

M
A
M
R

0 1 5 7 13 16 18 2324

B

B

C

C

A

A

D

D

Figure 4: Different dynamic heuristic schedules for a task

set of Table 4 with a memory capacity of 6.

Task Memory Req Comm Time Comp Time

A 3 3 2

B 1 1 6

C 4 4 6

D 5 5 1

Table 4: A task set for dynamic schedules.

4.2 Dynamic Selection

Dynamic strategies are based on the following principle: when

the communication resource is idle, a task is chosen based on a

selection criterion which differs depending on the heuristic, among

those which fit in memory and induce minimum idle time on the

computation resource. For example, if the selection criterion is

to choose a highly compute intensive task, then we compute the

ratio of computation time and communication time for all tasks,

and we select a task with the maximum ratio among those which

induce minimum idle time on the computation resource and fit in

the currently available memory. If no task fits in memory then we

leave the resource idle at that point and proceed to the next event

point.

i) largest communication task respectsmemory restriction (LCMR):

A task with the largest communication time is chosen.

ii) smallest communication task respectsmemory restriction (SCMR):

A task with the smallest communication time is chosen.

iii) maximumaccelerated task respectsmemory restriction (MAMR):

A task with the maximum ratio of computation time to com-

munication time is chosen.

Similar to the schedules of the previous class, Figure 4 highlights

the schedules of this class of heuristics for the example instance of

Table 4.

4.3 Static Order with Dynamic Correction

In this class of strategies, we precompute the order of tasks based

on some criterion and then follow this ordering as much as possible.

But when the communication resource is idle because the memory

requirement of the next task is too high, then we select a task with a

dynamic strategy. After a task is selected, we update the remaining

order without this task. This class of strategies takes advantage of

static information in the form of precomputed order and dynamic

correction to minimize the idle time due to memory constraint.



ICPP 2019, August 5–8, 2019, Kyoto, Japan Kumar, Eyraud-Dubois, and Krishnamoorthy

In all strategies of this class, the initial order is OMIM order

obtained by Algorithm 1. We define the following heuristics based

on how we select a task from the set of tasks which fit in memory

and induce minimum idle time on the computation resource. If no

task fits in memory then we leave the resource idle and forward to

the next event point.

i) optimal order infinite memory largest communication task re-

spects memory restriction (OOLCMR): A task with the largest

communication time is chosen from the set.

ii) optimal order infinite memory smallest communication task

respects memory restriction (OOSCMR): A task with the small-

est communication time is chosen from the set.

iii) optimal order infinite memory maximum accelerated task re-

spects memory restriction (OOMAMR): A task with the maxi-

mum ratio of computation time to communication time is

chosen from the set.
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Figure 5: Different static order dynamic correction heuristic

schedules for a task set of Table 5 with a memory capacity

of 9. The OMIM order is BCDEA.

Task Memory Req Comm Time Comp Time

A 4 4 1

B 2 2 6

C 8 8 8

D 5 5 4

E 3 3 2

Table 5: A task set for static order dynamic correction sched-

ules.

As previously, we propose on Table 5 an example instance for

this class of heuristics, and the corresponding schedules in Figure 5.

4.4 Additional Heuristics from Previous Work

We also consider two other static heuristics for evaluation. The

first heuristic is based on an algorithm, proposed by Gilmore and

Gomory, to obtain the minimal cost sequence for a set of jobs [13].

This is a classical algorithm for 2-machine no-wait flowshop prob-

lem. In this algorithm, each job has a start and end state and a cost is

associated to change the state. In our context, this cost can be seen

as non-overlap time of computation for two adjacent tasks. Here

is the main idea of this algorithm. Initially, a partial sequence of

jobs is represented by a graph such that their overlap is maximum.

Subsequently edges are greedily added to this graph to connect two

components while minimizing the total non-overlap cost. When

the graph is connected, an edge interchange mechanism is used to

determine the sequence of jobs, which ensures that the sequence has

minimal cost. We refer the original paper [13] for more details. This

algorithm does not take memory constraints into account and only

provides the sequence of processing. We use this sequence with a

memory capacity restriction just like for other static heuristics, and

we call this heuristic Gilmore-Gomory (GG).

The second heuristic is based on the First-Fit algorithm for the

bin packing problem. The idea of this heuristic is to identify groups

of tasks which can fit in memory together, called bins. In First-Fit,

tasks are considered in an arbitrary order and added to the first

bin in which they can fit. If no suitable bin is found then a new bin

is created and this task is added to it. When all tasks have been

assigned to bins, we consider the sequence made of all tasks from

the first bin, then tasks for the second bin, and so on. We call this

heuristic Bin Packing (BP ).

4.5 Solving Linear Program Iteratively

We use a mixed integer linear program to obtain the order of com-

munications and computations. Recall that COMPi and COMMi

represent computation and communication times of task i , and the

memory capacity of the target system is C . In the linear program

formulation, si and ei (resp. s
′
i and e

′
i ) represent the start and end

times of communication (resp. computation) for task i , andMC(i)

is the memory capacity requirement of task i . The formulation also

contains for each pair of tasks i and j i) a boolean variable ai j to

denote the order of i and j on the communication resource ii) a

boolean variable bi j to denote the order of i and j on the computa-

tion resource, and iii) a boolean variable ci j to denote the order of

si and e
′
j .

Let L =
∑

i (COMPi +COMMi ). It is evident that ei = si +COMMi

and e ′i = s
′
i +COMPi . The linear program is given below.

Minimize l subject to:

∀i, e ′i ≤ l (task i completes)

∀i, ei ≤ s ′i (task i valid ordering)

∀i,∀j , i,

{

ej ≤ si + (1 − ai j )L

ei ≤ sj + ai jL

(exclusive use of

communication link)

∀i,∀j , i,

{

e ′j ≤ s ′i + (1 − bi j )L

e ′i ≤ s ′j + bi jL

(exclusive use of

computation resource)

∀i,∀j , i,

{

e ′j ≤ si + (1 − ci j )L

si < e ′j + ci jL

(respect ordering

of variables ci j )

∀i,
∑

r,i

(air − cir )MC(r ) +MC(i) ≤ C (memory constraint)

The value 0 for ai j (resp. bi j ) indicates that task i ends before task

j starts on the communication (resp. computation) resource, while

1 indicates task j ends before task i starts. If task j ends on the

computation resource after task i starts on the communication

resource then ci j attains the value 0 else 1.

We use GLPK solver v4.65 to solve the above formulation. We

also add the following constraints to help the solver: ∀i,∀j , i ,

ai j + aji = 1, bi j + bji = 1, ci j ≤ ai j , ci j ≤ bi j , and ci j + c ji ≤ 1.

The solver was unable to solve this MILP at the scale of our interest

in limited time. Hence, we solve the linear program iteratively for

a small subset of size k = 3, 4, 5, 6: at the boundary of successive
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iterations we fix the event (communication or computation) of an

unfinished task started before the boundary point and consider

other events flexible. The subsets are formed in the order in which

tasks are submitted, which is arbitrary. We compute the makespan

of the complete set by applying above linear program iteratively

on a subset of size k and represent it by lp.k . We assess various

lp.k values for different memory capacities and observe that most

of the other heuristics perform better than this heuristic. Hence,

we do not include this heuristic for the comparison in Section 6.

Performance comparison of different heuristics with MILP based

heuristics is available in the extended version [16].

4.6 Favorable Situations for Heuristics

Based on the definition of proposed heuristics and the optimality of

Algorithm 1, we discuss the scenarios which might be more favor-

able for each heuristic in Table 6. This allows programmers to use

appropriate strategies to maximize communication-computation

overlap for their applications. In this table, “moderate memory ca-

pacity” refers to the case where memory is constrained, but close

to the maximal memory requirement of the OMIM schedule.

Heuristic Favorable Situation

OOSIM Memory capacity is not a restriction (Optimal)

IOCMS Memory capacity is not a restriction and tasks are

compute intensive (Optimal)

DOCPS Memory capacity is not a restriction and tasks are

communication intensive (Optimal)

IOCCS Moderate memory capacity and most tasks are

highly compute intensive

DOCCS Moderate memory capacity and most tasks are

highly communication intensive

LCMR Limited memory capacity and significant percent-

age of tasks with large communication times are

compute intensive

SCMR Limited memory capacity and significant percent-

age of tasks with small communication times are

compute intensive

MAMR Limited memory capacity and significant percent-

age of all types of tasks

OOLCMR Moderate memory capacity and significant percent-

age of slightly communication intensive tasks have

large communication times

OOSCMR Moderate memory capacity and significant percent-

age of slightly communication intensive tasks have

small communication times

OOMAMR Moderate memory capacity and significant percent-

age of all types of tasks

Table 6: Heuristics and their favorable scenarios.

Some of these favorable scenarios can be clearly observed in our

experimental results, on Figures 7 and 9. For example, HF compute

intensive tasks have small communication times, which explains

why the SCMR heuristic exhibits very good performance in limited

memory cases. CCSD has significant percentage of large as well as

small types of slightly communication intensive tasks, and indeed

the performance ofOOLCMR andOOSCMR is very close to optimal

in moderate memory cases.

5 EXPERIMENTAL SETTINGS

We consider a machine called Cascade1, available at PNNL, for our

experiments. We obtain traces by running two molecular chem-

istry applications, double precision version of HF and CCSD of

NWChem [25] package on 10 nodes of this machine. Each node is

composed of 16 Intel Xeon E5-2670 cores. NWChem takes advan-

tages of a Partitioned Global Address Space Programming Model

called Global Arrays (GA) [18] to use shared-memory programming

APIs on distributed memory computers. GA dedicates one core of

each node to handle communication, hence we can view a node as

being composed of 15 computational cores. We use 150 processes

for each application and obtain 150 trace files. We run CCSD with

Uracil molecules input and HF with SiOSi molecules (for Uracil

molecules, HF has a much smaller workload, each processor exe-

cutes only around 20 tasks, that is why we chose SiOSi input for

HF execution). Each process executes around 300-800 tasks. Our

data transfer model is quite simple and we consider that all data

transfers between the local memory of each process and the GA

memory take the same route. Modeling of different routes of data

transfers for the same source-destination pair, bandwidth sharing

for different source-destination pairs and network congestion is

more challenging and part of our future work. This simple model is

enough to provide insight to the application developers (or runtime

system) about the ordering of data transfers for the same source-

destination pair so as to maximize communication-computation

overlap. Our model is easily adaptable to any source-destination

pair when there is one fixed route between source and destination

(such as between CPU and GPU, one copy engine to transfer data

from CPU (resp. GPU) to GPU (resp. CPU) ).

Both applications mainly perform two types of computations,

tensor transpose and tensor contraction. HF expects to specify a

tile size and we set it to 100, so that each core can be used effi-

ciently. CCSD automatically determines tile sizes at different pro-

gram points based on the input molecules. Hence, HF operates on

almost homogeneous tiles while CCSD uses more heterogeneous

tiles.

5.1 Workload Characteristics

HF Workload CCSD Workload
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Figure 6: Characteristics of HF and CCSD tasks workloads.

Outliers are shown with black dots.

To get more insights into the considered workloads, we provide

information about the instances we consider in Figure 6. For each

1https://www.emsl.pnl.gov/emslweb/10.25582/inst.34218








