3,204 research outputs found

    Soft-Collinear Messengers: A New Mode in Soft-Collinear Effective Theory

    Full text link
    It is argued that soft-collinear effective theory for processes involving both soft and collinear partons, such as exclusive B-meson decays, should include a new mode in addition to soft and collinear fields. These "soft-collinear messengers" can interact with both soft and collinear particles without taking them far off-shell. They thus can communicate between the soft and collinear sectors of the theory. The relevance of the new mode is demonstrated with an explicit example, and the formalism incorporating the corresponding quark and gluon fields into the effective Lagrangian is developed.Comment: 22 pages, 5 figures. Extended Section 6, clarifying the relevance of different types of soft-collinear interaction

    Comment on form factor shape and extraction of |V_ub| from B --> pi l nu

    Get PDF
    We point out that current experimental data for partial B --> pi l nu branching fractions reduce the theoretical input required for a precise extraction of |V_ub| to the form factor normalization at a single value of the pion energy. We show that the heavy-quark expansion provides a bound on the form factor shape that is orders of magnitude more stringent than conventional unitarity bounds. We find |V_ub| = (3.7 +/- 0.2 +/- 0.1) x [0.8/F_+(16 GeV^2)]. The first error is from the experimental branching fractions, and the second is a conservative bound on the residual form factor shape uncertainty, both of which will improve with additional data. Together with current and future lattice determinations of the form factor normalization this result gives an accurate, model independent determination of |V_ub|. We further extract semileptonic shape observables such as |V_ub F_+(0)| = 0.92 +/- 0.11 +/- 0.03 and show how these observables can be used to test factorization and to determine low-energy parameters in hadronic B decays.Comment: 14 pages, 3 figures; journal version, results and conclusions unchange

    LDA+DMFT Approach to Magnetocrystalline Anisotropy of Strong Magnets

    Full text link
    The new challenges posed by the need of finding strong rare-earth free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE). We argue that correlated electron effects, which are normally underestimated in band structure calculations, play a crucial role in the development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from this orbital component, the ability to include correlation effects has profound consequences on our predictive power of the MAE of strong magnets. Here we show that incorporating the local effects of electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment, the mass enhancement and the MAE of YCo5.Comment: 7 pages, 4 figures, published versio

    Staircase polygons: moments of diagonal lengths and column heights

    Full text link
    We consider staircase polygons, counted by perimeter and sums of k-th powers of their diagonal lengths, k being a positive integer. We derive limit distributions for these parameters in the limit of large perimeter and compare the results to Monte-Carlo simulations of self-avoiding polygons. We also analyse staircase polygons, counted by width and sums of powers of their column heights, and we apply our methods to related models of directed walks.Comment: 24 pages, 7 figures; to appear in proceedings of Counting Complexity: An International Workshop On Statistical Mechanics And Combinatorics, 10-15 July 2005, Queensland, Australi

    Sudakov Resummation for Subleading SCET Currents and Heavy-to-Light Form Factors

    Full text link
    The hard-scattering contributions to heavy-to-light form factors at large recoil are studied systematically in soft-collinear effective theory (SCET). Large logarithms arising from multiple energy scales are resummed by matching QCD onto SCET in two stages via an intermediate effective theory. Anomalous dimensions in the intermediate theory are computed, and their form is shown to be constrained by conformal symmetry. Renormalization-group evolution equations are solved to give a complete leading-order analysis of the hard-scattering contributions, in which all single and double logarithms are resummed. In two cases, spin-symmetry relations for the soft-overlap contributions to form factors are shown not to be broken at any order in perturbation theory by hard-scattering corrections. One-loop matching calculations in the two effective theories are performed in sample cases, for which the relative importance of renormalization-group evolution and matching corrections is investigated. The asymptotic behavior of Sudakov logarithms appearing in the coefficient functions of the soft-overlap and hard-scattering contributions to form factors is analyzed.Comment: 50 pages, 10 figures; minor corrections, version to appear in JHE

    Substance P and Alpha-Calcitonin Gene-Related Peptide Differentially Affect Human Osteoarthritic and Healthy Chondrocytes

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease that not only causes cartilage loss but also structural damage in all joint tissues. Joints are innervated by alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP)-positive sensory nerve fibers. Alteration of sensory joint innervation could be partly responsible for degenerative changes in joints that contribute to the development of OA. Therefore, our aim was to analyze and compare the molecular effects of SP and αCGRP on the metabolism of articular chondrocytes from OA patients and non-OA cartilage donors. We treated the cells with SP or αCGRP and analysed the influence of these neuropeptides on chondrocyte metabolism and modulation of signaling pathways. In chondrocytes from healthy cartilage, SP had minimal effects compared with its effects on OA chondrocytes, where it induced inflammatory mediators, inhibited chondrogenic markers and promoted apoptosis and senescence. Treatment with αCGRP also increased apoptosis and senescence and reduced chondrogenic marker expression in OA chondrocytes, but stimulated an anabolic and protective response in healthy chondrocytes. The catabolic influence of SP and αCGRP might be due to activation of ERK signaling that could be counteracted by an increased cAMP response. We suggest that a switch between the G-subunits of the corresponding receptors after binding their ligands SP or αCGRP plays a central role in mediating the observed effects of sensory neuropeptides on chondrocytes

    Characterization and Comparison of Human Glioblastoma Models

    Get PDF
    AbstractGlioblastoma (GBM) is one of the deadliest cancers. Treatment options are limited, and median patient survival is only several months. Translation of new therapies is hindered by a lack of GBM models that fully recapitulate disease heterogeneity. Here, we characterize two human GBM models (U87-luc2, U251-RedFLuc). In vitro, both cell lines express similar levels of luciferase and show comparable sensitivity to temozolomide and lapatinib exposure. In vivo, however, the two GBM models recapitulate diferent aspects of the disease. U87-luc2 cells quickly grow into large, well-demarcated tumors; U251-RedFLuc cells form small, highly invasive tumors. Using a new method to assess GBM invasiveness based on detecting tumor-specifc anti-luciferase staining in brain slices, we found that U251-RedFLuc cells are more invasive than U87-luc2 cells. Lastly, we determined expression levels of ABC transporters in both models. Our fndings indicate that U87-luc2 and U251-RedFLuc GBM models recapitulate diferent aspects of GBM heterogeneity that need to be considered in preclinical research

    A Synaptic Basis for Auditory-Vocal Integration in the Songbird

    Get PDF
    Songbirds learn to sing by memorizing a tutor song that they then vocally mimic using auditory feedback. This developmental sequence suggests that brain areas that encode auditory memories communicate with brain areas for learned vocal control. In the songbird, the secondary auditory telencephalic region caudal mesopallium (CM) contains neurons that encode aspects of auditory experience. We investigated whether CM is an important source of auditory input to two sensorimotor structures implicated in singing, the telencephalic song nucleus interface (NIf) and HVC. We used reversible inactivation methods to show that activity in CM is necessary for much of the auditory-evoked activity that can be detected in NIf and HVC of anesthetized adult male zebra finches. Furthermore, extracellular and intracellular recordings along with spike-triggered averaging methods indicate that auditory selectivity for the bird’s own song is enhanced between CM and NIf. We used lentiviral-mediated tracing methods to confirm that CM neurons directly innervate NIf. To our surprise, these tracing studies also revealed a direct projection from CM to HVC. We combined irreversible lesions of NIf with reversible inactivation of CM to establish that CM supplies a direct source of auditory drive to HVC. Finally, using chronic recording methods, we found that CM neurons are active in response to song playback and during singing, indicating their potential importance to song perception and processing of auditory feedback. These results establish the functional synaptic linkage between sites of auditory and vocal learning and may identify an important substrate for learned vocal communication

    ACTS Operations Extended Through a University-Based Consortium

    Get PDF
    The Advanced Communications Technology Satellite (ACTS) program was slated for decommissioning in October 2000. With plans in place to move the spacecraft to an orbital graveyard and then shut the system down, NASA was challenged to consider the feasibility of extending operations for education and research purposes provided that an academic organization would be willing to cover operations costs. This was determined to be viable, and in the fall of 2000, NASA announced that it would consider extending operations. On March 19, 2001, NASA, the Ohio Board of Regents, and the Ohio University signed a Space Act Agreement to continue ACTS operations for 2 more years with options to extend operations up to a total of 4 years. To accomplish this, the Ohio University has formed a university-based consortium, the Ohio Consortium for Advanced Communications Technology (OCACT), and acts as the managing member. The Ohio University is responsible for the full reimbursement of NASA's operations costs, and does this through consortium membership. NASA retains the operating license of the spacecraft and has two contractors supporting spacecraft and master control station operations. This flexible arrangement between NASA and academia allows the education community to access a large communications satellite for learning about spacecraft operations and to use the system's transponders for communications applications. It also allows other organizations, such as commercial companies, to become consortium members and use the ACTS wideband Ka-band (30/20 GHz) payload. From the consortium members, six areas of interest have been identified
    • …
    corecore