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Abstract

We point out that current experimental data for partialB → πlν branching fractions reduce the theoretical input required for a pre
extraction of |Vub| to the form-factor normalization at a single value of the pion energy. We show that the heavy-quark expans
vides a bound on the form-factor shape that is orders of magnitude more stringent than conventional unitarity bounds. We find|Vub| =
(3.7± 0.2± 0.1)× [0.8/F+(16 GeV2)]. The first error is from the experimental branching fractions, and the second is a conservative
on the residual form-factor shape uncertainty, both of which will improve with additional data. Together with current and future lattice
nations of the form-factor normalization this result gives an accurate, model independent determination of|Vub|. We further extract semileptoni
shape observables such as|VubF+(0)| = 0.92± 0.11± 0.03 and show how these observables can be used to test factorization and to de
low-energy parameters in hadronicB decays.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Measuring the magnitude of the weak mixing matrix e
ment Vub is important for constraining the unitarity triang
and testing the standard model of weak interactions. The ex
sive determination of|Vub| requires knowledge of the releva
heavy-to-light meson form factor and in the past this has le
significant model dependence in the result. First, the meth
that were used to calculate the form factor, such as light-c
sum rules, quark models and quenched lattice calculation
have unknown systematic errors. Second, each of these m
ods covers only part of the kinematic range; to obtain the t
decay rate, the results were extrapolated using simplified p
meterizations for the momentum dependence of the form fa
In the past year, the situation has improved dramatically: th
are now several measurements of partialB → πlν branching
fractions[1–4] and the first results for the form factor from pr
cision lattice simulations with dynamical light quarks have b
presented[5,6]. We show in this Letter that if theoretical boun
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on the form factor are taken into account, the experimenta
sults for the partial branching fractions determine the shap
the form factor, to the point where no shape information at a
required from theory. This reduces the theoretical input for
determination of|Vub| to a normalization of the relevant form
factor, which can be taken at an energy within the range stu
with current lattice simulations. For the first time, this allo
an accurate, model independent, determination of|Vub| from
exclusive semileptonic decays.

Bounds on the form factor can be derived via the comp
tion of an appropriately chosen correlation function in pertur
tive QCD. By unitarity and analyticity, the resulting “dispersi
bound” constrains the behavior of the form factor in the se
leptonic region[7–10], and may be expressed as a condition
the coefficients in a convergent series expansion. While t
bounded “series parameterizations” have been around for
than twenty-five years, many papers on the subject (in partic
all experimental papers) have instead used simple pole form
parameterize the form factor. In order to unify these desc
tions, and to explain the dispersive bounds in a simple
ting, we compare the class of series parameterizations eme
from the conventional dispersive bound analysis to the c
of “pole parameterizations” introduced in[11,12]. Both repre-
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sentations are exact, in the sense that the true form fact
guaranteed to be described arbitrarily well by a member of
class, and dispersive bounds can be established for both c
by power counting in the heavy-quark mass. With the res
ing constraints in place, stable fits without truncation to a fi
number of parameters can be performed. In fact, for the
ries parameterization, we show that the bound given by sim
heavy-quark power counting is orders of magnitude more s
gent than the bound based on unitarity, thus providing m
better control over the extraction of physical observables f
the data. We also derive three new exact sum rules for the
ficients appearing in the series representation of the form fa

The Letter is organized as follows. In Section2 we re-
view the pole and series parameterizations of the form fa
We list the experimental and lattice data to be used throu
out the Letter, and for later comparison we determine|Vub|
using three-parameter truncations of these parameteriza
Section3 then introduces the bounds associated with each
rameterization, and establishes conservative estimates bas
heavy-quark power counting for the bounded quantities. S
tion 4 examines the maximal precision for|Vub| that can be
reached with present data. We show that with a form-fa
determination at intermediateq2 values, within the range stud
ied in current lattice simulations, the experimental uncerta
on |Vub| is well below 10%, whereas a form-factor determin
tion near maximalq2 would not translate into a precise val
of |Vub|. We introduce three shape observables,|VubF+(0)|,
F ′+(0)/F+(0) andα, and discuss their sensitivity to the exa
value of the bound. In Section5, having established our pro
cedure, we present final values for|Vub|, and for F+(0), in
terms of a single lattice data point,F+(16 GeV2). We extract
the shape observables, which are determined by the exper
tal semileptonic data alone, and show how these observ
provide important constraints on the factorization approac
hadronicB decays.

2. Form-factor parameterizations and extraction of |Vub|

Having restricted the shape of theq2 spectrum, or equiva
lently, of the form factor, by experimental measurements,
central value and errors for|Vub| are determined by varying th
allowed form factor over all “reasonable” curves that are con
tent with the data, and with a normalization of the form fac
taken from theory at a given value (or multiple values) ofq2.
Defining this procedure precisely requires specifying a clas
curves that contains the true form factor (to a precision c
patible with the data), and that is sufficiently rich to descr
all variations impacting the observables under study. A sta
cal analysis along standard lines then determines central v
and errors for the desired observable quantities.

A starting point to isolate such a class of curves is the
persive representation of the relevant form factor:

(1)F+
(
q2) = F+(0)/(1− α)

1− q2

m2
B∗

+ 1

π

∞∫
t+

dt
ImF+(t)

t − q2 − iε
.
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Here α is defined by the relative size of the contribution
F+(0) from the B∗ pole, andt± ≡ (mB ± mπ)2. For mass-
less leptons, the semileptonic region is given by 0� q2 � t−.
Eq. (1) states that, after removing the contribution of theB∗
pole lying below threshold,F+(q2) is analytic outside of a cu
in the complexq2-plane extending along the real axis fromt+
to ∞, corresponding to the production region for states with
appropriate quantum numbers.

One class of parameterizations keeps theB∗ pole explicit
and approximates the remaining dispersion integral in(1) by a
number of effective poles:

(2)F+
(
q2) = F+(0)/(1− α)

1− q2

m2
B∗

+
N∑

k=1

ρk

1− 1
γk

q2

m2
B∗

.

The true form factor can be approximated to any desired
curacy by introducing arbitrarily many, finely-spaced, effect
poles. In the next section, we derive a bound on the ma
tudes,|ρk|, of the coefficients of the effective poles. This allo
a meaningfulN → ∞ limit, thus enabling us to investigate th
behavior of the fits when arbitrarily many parameters are
cluded. We find in actuality that current data cannot yet res
more than one distinct effective pole in addition to theB∗ pole.
Parameterizations of the above type are widely used to fit f
factors. In particular, a simplified version of theN = 1 case,
the so-called Becirevic–Kaidalov (BK) parameterization[11] is
used in many recent lattice calculations and experimental s
ies. As shown in[12], this two-parameter form is overly restri
tive since it enforces scaling relations which at smallq2 are bro-
ken by hard gluon exchange. The size of these hard-scatt
terms, which appear at leading order in the heavy-quark ex
sion, is subject to some controversy and constraining their
is an important task. The parameterization of the form fac
should allow for their presence.

Another class of parameterizations is obtained by expan
the form factor in a series around someq2 = t0 in the semi-
leptonic region up to a fixed order, with the coefficients of t
expansion as the fit parameters. The convergence of this s
expansion is very poor due to the presence of the nearby s
larities atq2 = m2

B∗ andq2 = t+. However, an improved serie
expansion of the form factor that converges in the entire
q2-plane is obtained after a change of variables that maps
region onto the unit disc|z| < 1. In terms of the new variable
F+ has an expansion

F+
(
q2) = 1

P(q2)φ(q2, t0)

∞∑
k=0

ak(t0)
[
z
(
q2, t0

)]k
,

(3)z
(
q2, t0

) =
√

t+ − q2 − √
t+ − t0√

t+ − q2 + √
t+ − t0

,

with real coefficientsak . The variablez(q2, t0) maps the inter-
val −∞ < q2 < t+ onto the line segment−1 < z < 1, with the
free parametert0 ∈ (−∞, t+) corresponding to the value ofq2

mapping ontoz = 0. Points immediately above (below) theq2-
cut are mapped onto the lower (upper) half-circle|z| = 1. The
functionP(q2) ≡ z(q2,m2 ∗) accounts for the pole inF+(q2)
B
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crease
Fig. 1. Experimental data for the partialB̄0 → π+�−ν̄ branching ratios and fit result shown as solid line. The fit results from(2) with N = 1 and(5) with kmax= 2
are indistinguishable. Note that the experimental data is binned:[1–3] give the result in three bins, while[4] gives the result in fiveq2-bins. We plot the value and
error divided by the bin width at the averageq2-value in each bin. For the three-bin results, we have slightly shifted the points to the left and right to in
visibility.
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B∗ , while φ(q2) is any function analytic outside o

the cut. It is interesting to note that this reorganization succe
in turning a large recoil parameter,(v · v′)max − 1 ≈ 18, into a
small expansion parameter. For example, fort0 = 0 the variable
z is negative throughout the semileptonic region and

(4)|z|max=
√

(v · v′)max+ 1− √
2√

(v · v′)max+ 1+ √
2

≈ 0.5,

wherev andv′ are the velocities of theB andπ mesons. The
same size, but for positivez is obtained fort0 = t−. By choosing
the intermediate valuet0 = t+(1− √

1− t−/t+), the expansion
parameter can be made as small as|z|max≈ 0.3. A second clas
of parameterizations is obtained by a truncation of the ab
series:

(5)F+
(
q2) = 1

P(q2)φ(q2, t0)

kmax∑
k=0

ak(t0)
[
z
(
q2, t0

)]k
.

As discussed in the next section, it is conventional to take

φ
(
q2, t0

) =
(

πm2
b

3

)1/2(
z(q2,0)

−q2

)5/2(
z(q2, t0)

t0 − q2

)−1/2

(6)×
(

z(q2, t−)

t− − q2

)−3/4
(t+ − q2)

(t+ − t0)1/4
.

With this choice, a bound
∑

k a2
k � 1 is obtained by perturbativ

methods.1 Together with the restriction|z| < 1, this allows a

1 For differentt0, the expansion parameters,z ≡ z(t, t0) andz′ ≡ z(t, t ′0), and
expansion coefficients,ak ≡ ak(t0) anda′

k
≡ ak(t ′0), are related by the Möbiu

transformation:

z′ = z(t0, t ′0) + z

1+ z(t0, t ′0)z
,

√
1− z2

∞∑
k=0

akzk =
√

1− z′2
∞∑

k=0

a′
kz′k.

It is easily verified that the sum of squares of coefficients is invariant under
a transformation,

∑
k a2

k
= ∑

k a′2
k

, as guaranteed by the construction ofφ,
see(9).
s

e

h

meaningfulkmax → ∞ limit. In actuality, we find that curren
data can only resolve the first three terms in the series(5).

Fig. 1 shows the available experimental data on the p
tial branching fractiondΓ (B̄0 → π+�−ν̄)/dq2. The CLEO
[1], Belle [2] and BaBar[4] Collaborations have measured th
branching fraction in three separateq2-bins and BaBar[3] has
presented a measurement using fiveq2-bins. The correlation
matrix is included in our fits for the data in[1]. For the remain-
ing data,q2-bins are taken as uncorrelated. In order to ext
|Vub| we also need the normalization of the form factor. T
B → π vector form factors have recently been determined
the Fermilab Lattice[5] and by the HPQCD[6] Collaborations
in lattice simulations with dynamical fermions. The prelimina
results of these calculations giveF+(16 GeV2) = 0.81± 0.11
[5] andF+(16 GeV2) = 0.73± 0.10[6].2 Although the lattice
calculations give the form factor at several differentq2-values,
the correlations between different points are not available
it is difficult to quantify the uncertainty on the shape. Anti
pating the analysis of Section4, where we determine the rang
of q2 that best exploits the experimental shape information
useF+(16 GeV2) = 0.8±0.1 as our default value for the form
factor normalization. Note that we have avoided any theore
biases concerning the form-factor shape. Performing aχ2 fit
yields|Vub| = 3.7+0.6

−0.5 × 10−3 for both the parameterization(2)
with N = 1, and(5) with kmax= 2.

Fig. 2 shows the 68% and 95% confidence limits for|Vub|
as a function of the value and uncertainty of the form facto
q2 = 16 GeV2. The form-factor normalization is the domina
error in the determination of|Vub|; if the quantityF+(16 GeV2)

would be known exactly, the uncertainty on|Vub| would drop
to approximately 6%. The quality of the fit is equally good

2 The parameterization(2) with N = 1 has been used to interpolate to t

commonq2-point, and for definiteness the errors are taken as those from
nearest points:q2 = 15.87 GeV2 [5], with statistical and systematic erro
added in quadrature, andq2 = 16.28 GeV2 [6].
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Fig. 2. 68% (dark) and 95% (light) confidence limits for|Vub| determined by fitting the parameterizations(2) or (5) to experimental data in[1–4], with the single
lattice data pointF+(16 GeV2) = 0.8 ± 0.1. Results from(2) and (5)are indistinguishable. The plot on the right shows|Vub| for fixed F+(16 GeV2) = 0.8 as a
function of the relative uncertainty on the form factor.
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both parameterizations, withχ2 = 12.0.3 The extracted value
of |Vub| is insensitive to the choice of the free parametert0. Set-
ting φ(q2) = 1 in (5) also has negligible impact, and similar
adding more lattice input points does not substantially cha
the result if the dominant lattice errors are correlated. The
fect of allowing additional terms in the parameterizations(2)
and (5)is investigated in the following sections. We will fin
that the result for the value and uncertainty of|Vub| from the
simple parameterizations used in this section is not apprec
altered if additional terms are included.

3. Form-factor bounds

To make a fully rigorous determination of|Vub|, the trunca-
tion to the three-parameter classes of curves considered i
previous section requires justification. For instance, if the
glected terms in(2) or (5) conspired to produce a sharp pe
in the form factor at precisely the value of the lattice inp
point, then the integrated rate would be overestimated, an
value of|Vub| underestimated. To prevent this from happen
requires some bound on the perversity of allowed form-fa
shapes. In practice, we would like to ensure that our extrac
of physical observables is “model-independent” by allowing
arbitrarily many parameters, i.e., takingN → ∞ in (2) and
kmax→ ∞ in (5). Retaining predictive power then demands t
a bound be enforced on the parameters appearing in thes
pansions.

To bound the coefficientsρk in the expansion(2), we intro-
duce a decomposition of the integration region,t+ � t1 < · · · <

3 Note that all three-bin measurements determine the same observable

tities. The minimalχ2 obtained from the three-bin measurements is 5.0 for 9–3
degrees of freedom. This value measures the (good) agreement betwe
three-bin measurements, and should be subtracted from the total in order
tain a measure of agreement between the data and the parameterization
resulting quality of our fit is good: 12.0–5.0 for 9–4 degrees of freedom.
e
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tN+1 < ∞, and define

(7)ρk ≡ 1

π

tk+1∫
tk

dt

t
ImF+(t), γk ≡ tk

m2
B∗

.

SinceF+(t) ∼ t−1 at larget , it follows that

(8)
∑

k

|ρk| � 1

π

∞∫
t+

dt

t

∣∣F+(t)
∣∣ ≡ R,

and this is the desired bound. The integral in(8) is dominated by
states witht − t+ ∼ mbΛ, whereF+ ∼ m

1/2
b , so that the quan

tity R is parametrically of order(Λ/mb)
1/2, with Λ a hadronic

scale. To be sure that the bound deserves the model-indepe
moniker, one should use a very conservative estimate. In
fits we will useR �

√
10 andR � 10, i.e., we allow for an ad

dition factor of 100 or 1000 beyond the dimensional estim
R2 ∼ Λ/mb ∼ 0.1.

The coefficientsak in the expansion(5) can be bounded
by requiring that the production rate ofBπ states, describe
by the analytically continued form factor, does not overwhe
the production rate ofall states coupling to the current of in
terest (in this case, the vector currentūγ µb). The latter rate
is computable in perturbative QCD using the operator prod
expansion (for a pedagogical discussion, see, e.g.,[10]). The
functionφ in (6) was chosen such that the fractional contrib
tion of Bπ states to this rate is given at leading order by

∞∑
k=0

a2
k = 1

2πi

∮
dz

z

∣∣φ(z)P (z)F+(z)
∣∣2

(9)= m2
b

3

∞∫
t+

dt

t5

[
(t − t+)(t − t−)

]3/2∣∣F+(t)
∣∣2 ≡ A.

In the heavy-quark limit, the leading contributions to the in
gralA in (9) are of order(Λ/mb)

3 and arise from two regions
the region close to threshold,t − t+ ∼ mbΛ, where the pion ha
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energyE ∼ Λ and the form factor scales asF+ ∼ m
1/2
b ; and

the regiont − t+ ∼ m2
b, whereE ∼ mb andF+ ∼ m

−3/2
b (for a

discussion of the form-factor scalings, see[12]). The region of
very high energiest 
 m2

b, whereF+ ∼ 1/t, gives a subleading
contribution.

Since, by definition, the fraction is smaller than unity, it
conventional to take the loose boundA � 1, which does no
make use of scaling behavior in the heavy-quark limit. Clea
this bound leaves much room for improvement; from its s
ing behavior, we expectA to be on the order of a few permille
This implies that higher-order perturbative and power cor
tions in the operator product analysis introduce negligible e
as noticed in[13]. It is also easy to see that the dispers
bounds by themselves do not impose tight constraints on
form-factor shape. Since the scale of the coefficients is se
a0 ∼ m

−3/2
b , even with the optimal choice|z|max≈ 0.3, the dis-

persive bounds allow the relative size of higher-order term
the series,|akz

k/a0|, to be of order unity up tok ≈ 4, and to
contribute significantly for even higherk. This situation for
heavy-to-light decays such asB → π contrasts with that fo
heavy–heavy decays such asB → D [14,15], where the bound
is parametrically of order unity (countingmc ∼ mb 
 Λ). For
this case, the scale of the coefficients is set bya0 ∼ m0

b, and with
|z|max ≈ 0.06 the bound ensures that only the first few term
the series are required for percent accuracy.

To put the dispersive bounds in perspective, it may be
ful to emphasize that establishing an order-of-magnitude bo
on any integral of the form

∫ ∞
t+ dt k(t)|F+(t)|2 for somek(t)

would yield an equally valid, bounded, parameterization, w
a newφ(t) constructed fromk(t) as in(6) and (9). Similarly,
bounded pole parameterizations(2) are obtained by establish
ing an order-of-magnitude bound on any integral of the fo∫ ∞
t+ dt k(t)|F+(t)| for somek(t), as in(7) and (8). Focusing at-

tention on the special case of(6) and (9)is justified only to the
extent that the bound(9) is sufficiently restrictive, and to th
extent that similar or tighter bounds cannot be conservati
estimated by other means.

It is interesting to note that the two bounds are not equ
lent. The bound

∑
k |ρk| � R < ∞ uses the fact that the asym

totic form factor can be evaluated in perturbation theory, wh
the scalingF+(t) ∼ t−1 is found at larget . This condition is
not automatically satisfied by the series parameterization(5),
which as seen from(9) requires onlyF+(t) � t1/2 at larget .
Imposing the proper large-t behavior yields the sum rules

dn

dzn
P (z)φ(z)F (z)

∣∣∣∣
z=1

= 0 ↔
∞∑

k=0

knakz
k

∣∣∣∣
z→1

= 0,

(10)n = 0,1,2.

To our knowledge, the above sum rules have not been discu
in the literature. On the other hand, all pole parameterizat
“violate” the bound

∑∞
k=0 a2

k ≡ A < ∞ for the simple reason
that the integral in(9) is not well defined for these paramete
zations, becauseF+(t) has poles on the integration contour.

The bounds discussed here are associated with the beh
of the form factor above threshold. Since we are intereste
the form factor in the semileptonic region, these higher-ene
-

-
r,

e
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-
d

y

-

e

ed
s
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n
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properties are useful only to the extent that they can hel
constrain the form factor in this region. Incorrect high-ene
behavior therefore does not imply that a given parameteriza
cannot be used to describe low-energy data. For instance
effective poles in(2) could be smeared into finite-width effe
tive resonances in order to make the integral in(9) converge;
however, the semileptonic data is very insensitive to such fi
grained detail, and this modification has a very minor imp
on the fits. Similarly, unless the bound(9) is close to being
saturated, the coefficientsak for moderately largek in the se-
ries parameterization(5) can be tuned to satisfy the sum rul
(10), or equivalently, to make the integral in(8) converge. How-
ever, the semileptonic data becomes insensitive to termszk for
largek, and again such a modification has little impact on
fits. Thus, while at some level the bound(8) will constrain the
parameters in the series parameterization(5), and the bound(9)
will constrain the parameters in the pole parameterization(2),
we restrict attention to the constraints imposed by(8) on the
pole parameterization, and by(9) on the series parameteriz
tion.

4. Parameterization uncertainty and shape observables

With the bounds in place, it is straightforward to gener
ize the fits in Section2 to include arbitrarily many parameter
Imposing the very conservative bound

∑
k |ρk| < 10, we ob-

serve that additional poles in the class of parameterization(2)
have essentially no impact on the central value and error
|Vub|. Similarly, using the very conservative bound

∑
k a2

k < 1
in (5), we find that the inclusion of higher-order terms beyo
kmax = 2 has negligible impact on|Vub|. The errors are domi
nated by the lattice input point, and both the central value
errors are not changed significantly from theN = 1 orkmax= 2
fits in Section2.

In order to isolate the uncertainty on the form-factor sh
inherent to the present data, we show inFig. 3the minimum at-
tainable error on|Vub|, assuming exact knowledge of the for
factor at oneq2-value. Results are shown for the parameter
tion (5), using various bounds

∑
k a2

k < 0.01, 0.1 and 1. As the
figure illustrates, points in the intermediate range ofq2 lead to
the smallest uncertainty on|Vub|, and for these points, the|Vub|
extraction is not very sensitive to even the order of magnit
of the chosen bound, with the minimum error varying from
proximately 6% to approximately 8% as the bound is rela
from 0.01 to 1. It should be noted that a better understandin
correlations in the experimental data would be necessary w
probing this level of precision. The curves inFig. 3are also in-
dicative of the impact of additional theory inputs. Perform
the fits with data points at differentq2-values in addition to the
defaultF+(16 GeV2) shows that a point atq2 = 0 would re-
quire� 10% error to significantly decrease the error on|Vub|,
while even exact knowledge of the form factor atq2 = t− has
almost no impact.

In the remainder of this section we consider observa
which are more sensitive to the shape of the form factor
investigate the role played by the bounds in these case
particular, we extract the form factor and its first derivative
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tral
Fig. 3.�χ2 = 1 region for|Vub| for an infinitely precise form-factor determination at a singleq2-value. The plot assumes that the form factor yields the cen
value|Vub| = 3.7× 10−3. The darkest band is obtained for

∑
a2 < 0.01, while the two lighter bands correspond to

∑
a2 < 0.1 and

∑
a2 < 1.
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q2 = 0, as well as the residue at theB∗ pole, which is directly
related to the parameterα, as in (1). These quantities are inte
esting in their own right. The form factor at zero moment
transfer, normalized as|Vub|F+(0), is an important input for
the evaluation of factorization theorems for charmless two-b
decays such asB → ππ . The derivative of the form factor a
q2 = 0, conveniently normalized as(m2

B − m2
π )F ′+(0)/F+(0),

determines the quantityδ measuring the ratio of hard-scatteri
to soft-overlap terms in the form factor[12]. Finally, the value
of (1 − α)−1 is proportional to the coupling constantgB∗Bπ .
The observable quantities|Vub|F+(0), F ′+(0)/F+(0) andα are
independent of the form-factor normalization, and hence are
termined solely by the experimental data.

In Tables 1 and 2, we show how the results for the sh
observables change when additional parameters are incl
For the pole parameterization(2) we perform fits withN = 1,
2 and 3 poles in addition to theB∗ pole. (The caseN = 1 was
studied in[12].) To help stabilize the fits, we impose a minimu
spacing of the polesγk+1 − γk > 1/N, and a maximum pole
position,γk < N + 1. For the polynomial parameterization(5),
we setkmax = 2, 3 and 4. We perform each of the fits with tw
different bounds—a very loose model-independent bound,
a more stringent bound that relies on the scaling behavio
the bounded quantity in the heavy-quark limit. Given a value
the bound, a central value and errors are determined by ta
the limit of largeN in (2), or largekmax in (5). The sequence
converges once the size of the neglected terms is constrain
the bound to lie below the sensitivity of the chosen observa

The quantities|Vub|F+(0), F ′+(0)/F+(0) andα exhibit dif-
ferent sensitivities to the bounds. This is to be expected, s
sharp bends in the fitted curve at the endpoints allowed by
additional terms can have strong effects on the slope, or o
residue of theB∗ pole, but are not constrained tightly by th
data. Imposing only very loose bounds therefore leads to l
uncertainties for these quantities.
y

e-

e
d.

d
f

f
g

by
.

e
e
e

e

It is instructive to examine the relation between observa
and expansion coefficients. Att0 = 0 the quantitiesf (0), α, β

andδ studied in[12] are related to the coefficientsak by

f (0)≡ F+(0)= 16a0

m̂b

(
3

π

)1/2
(1+ m̂π )5/2

(1+ √
m̂π )3

1+ m̂π + ∆̂

1+ m̂π − ∆̂
,

1+ β−1 − δ

≡ m2
B − m2

π

F+(0)

dF+
dq2

∣∣∣∣
q2=0

= −a1

4a0

1− m̂π

1+ m̂π

+ 3

4

1− √
m̂π

1+ √
m̂π

+ ∆̂(1− m̂π )

(1+ m̂π )2 − ∆̂2
,

(1− α)−1 = (1+ m̂π + ∆̂)2(1+ √
m̂π )3

4(1+ m̂π )2(∆̂ + 2
√

m̂π )3/2

(11)×
∞∑

k=0

ak

a0

(
(−1)

1+ m̂π − ∆̂

1+ m̂π + ∆̂

)k

,

where ∆2 ≡ (mB + mπ)2 − m2
B∗ , and hats denote quant

ties in units ofmB . The heavy-quark scaling laws forf (0)

and 1+ β−1 − δ are special cases of the general lawak ∼
m

−3/2
b , obtained by takingk derivatives in(3), and noticing

that dnF+/d(q̂2)n|q2=0 ∼ m
−3/2
b when scaling violations ar

neglected. Similarly, the scaling law for(1 − α)−1 translates
into the behavior∆̂−1/2 ∼ m

1/4
b for the sum appearing in th

last equation of(11).

5. Results and discussion

In order to extract the most precise value of|Vub|, it is im-
portant to make full use of the existing experimental data
B → πlν that determines the form-factor shape. To emp
size this point, the analysis was done here using no shap
formation at all from theory, but only a normalization at o
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Table 1
Fit results for form-factor shape parameters using the pole parameterization(2)

Bound
∑

k |ρk | = 10
∑

k |ρk | = √
10

N 1 2 3 1 2 3∑
k |ρk | 1.02 1.36 10 1.02 1.36

√
10

χ2 11.97 11.96 11.58 11.97 11.96 11.80

103|Vub|F+(0) 0.93+0.06
−0.09 0.93+0.11

−0.09 0.87+0.14
−0.12 0.93+0.06

−0.09 0.93+0.10
−0.09 0.91+0.11

−0.10
(m2

B
−m2

π )F ′+(0)

F+(0)
1.3+0.4

−0.1 1.3+0.4
−0.7 2.0+0.9

−1.2 1.3+0.4
−0.1 1.3+0.4

−0.6 1.5+0.6
−0.8

(1− α)−1 5+5
−3 6+6

−5 6+20
−15 5+5

−3 6+6
−5 6+6

−8

Table 2
Fit results for form-factor shape parameters using the series parameterization(5) with t0 = 0

Bound
∑

k a2
k

< 1
∑

k a2
k

< 0.01

kmax 2 3 4 2 3 4∑
k a2

k
0.003 0.3 1 0.003 0.01 0.01

χ2 12.0 11.7 11.7 12.0 11.9 11.9

103|Vub|F+(0) 0.93+0.10
−0.10 0.87+0.15

−0.15 0.87+0.14
−0.14 0.93+0.10

−0.10 0.92+0.11
−0.10 0.92+0.11

−0.10
(m2

B
−m2

π )F ′+(0)

F+(0)
1.3+0.6

−0.5 2.0+1.4
−1.4 2.0+1.4

−1.4 1.3+0.6
−0.4 1.4+0.6

−0.6 1.5+0.6
−0.6

(1− α)−1 6+2
−2 13+8

−14 9+20
−17 6+2

−2 7+2
−5 8+2

−6
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f to a
q2-point. Our results make it clear that the limiting factor
the determination of|Vub| is currently the form-factor norma
ization, with very small uncertainty associated with the for
factor shape. Similar conclusions are implicit in other rec
works. For example, in[13] the reduction in error compare
to methods employing only total experimental branching fr
tions is due almost entirely to the inclusion of shape informa
from experiment, and not to the inclusion of additional the
input points. In[16], experimental data is combined with sim
ple parameterizations of the form-factor shape to constrain
hadronic input parameters appearing in sum rule estimate
the form factor. In contrast to these and other previous wo
we have avoided any theoretical biases concerning the f
factor shape.

In practical terms, the parameterizations(2), with N = 1,
and(5), with kmax = 2, are sufficient for describing the curre
generation of semileptonic data, in the sense that the add
of more parameters does not significantly improve the fits
provide rigorous error estimates it is necessary to allow for a
trarily many additional parameters within the dispersive bou
(8) and (9). For “global” quantities like|Vub| it is possible to
show by imposing only the very loose bounds

∑
k |ρk| < 10 in

(2), or
∑

k a2
k < 1 in (5) that the extracted values are actua

insensitive to the addition of more parameters. With a sin
lattice input valueF+(16 GeV2) = 0.8± 0.1, we find

|Vub| = 3.7± 0.2+0.6
−0.4 ± 0.1= (3.7± 0.2)× 0.8

F+(16 GeV2)
,

F+(0)= 0.25± 0.04± 0.03± 0.01

(12)= (0.25± 0.04)× F+(16 GeV2)

0.8
.

The first error is experimental, the second is theoretical f
the lattice input, and the third is due to the uncertainty in
t

-

e
of
,
-

n

i-
s

form-factor shape. For definiteness, the central values in(12)
are obtained using the parameterization(5) with

∑
k a2

k < 0.01,
and the third error is very conservatively estimated by add
the maximum variation of the boundaries of the 1σ interval in-
duced by relaxing the bound to

∑
k a2

k < 1.
For less global quantities, like the slope of the form fac

at q2 = 0, the very loose bounds(8) and (9)are not sufficient
to tightly constrain the impact of arbitrarily many addition
parameters. In this case we adopt more realistic estimate
the bounds, and find

103
∣∣VubF+(0)

∣∣ = 0.92± 0.11± 0.03,

(
m2

B − m2
π

)F ′+(0)

F+(0)
= 1.5± 0.6± 0.4,

(13)(1− α)−1 = 8+2
−7 ± 7.

The first error is experimental, and the second is due to
certainty in the form-factor shape (these quantities are in
pendent of the form-factor normalization). The central val
in (13) are again obtained using the parameterization(5) with∑

k a2
k < 0.01, and the shape error is conservatively estima

by adding the maximum variation of the boundaries of theσ

interval when the bound is relaxed to
∑

k a2
k < 0.1.

While the conventional dispersive bound approach prov
an elegant means of demonstrating formal convergence pr
ties with the minimal assumption of form-factor analyticity a
the convergence of an operator product expansion, some
tion is required in order to avoid misinterpreting the resu
Firstly, for certain observables, e.g.,|Vub|, the fits are much
more tightly constrained by the data than by the unitarity-ba
dispersive bound. This leads to the happy conclusion tha
errors on|Vub| do not depend on the chosen parameteriza
or the exact value of the bound, and the analysis lends itsel
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straightforward statistical interpretation. Secondly, other imp
tant observables, such as the slope of the form factor,are sensi-
tive to the addition of more parameters than can be constra
by the data, but are allowed by the unitarity bound. Since
bound is overestimated, presumably by orders of magnit
a reliance on this procedure would lead to the pessimistic
clusion that almost no information at all can be extracted fr
the data for these quantities. In such cases, we propose t
tighter bounds, which follow from the scaling behavior of t
bounded quantity in the heavy quark limit.

Apart from establishing order-of-magnitude estimates
the bounds in(8) and (9)by heavy-quark power counting, non
of the above analysis relies on heavy-quark, large-recoil or
ral expansions, or on the associated heavy-quark, soft-coll
or chiral effective field theories. However, the semileptonic d
can be used to test predictions from these effective field t
ries, and to determine low-energy parameters that can be
as inputs to the calculation of other processes. For example
ing the experimental result Br(B− → π−π0) = (5.5 ± 0.6)×
10−6 [17] together with|Vub|F+(0) from (13), we find

(14)
Γ (B− → π−π0)

dΓ (B̄0 → π+�−ν̄)/dq2|q2=0
= 0.76+0.22

−0.18 ± 0.05 GeV2,

where the first error is experimental, and the second is du
the form-factor shape uncertainty in(13). Such ratios provide
a strong test of factorization[18]. The leading-order predic
tion for this ratio, corresponding to the “naive” factorizati
picture where hard-scattering corrections are neglected, y
16π2f 2

π |Vud |2(C1 + C2)
2/3 = 0.62± 0.07 GeV2. This uncer-

tainty includes only the effects of varying the renormalizat
scale of the leading-order weak-interaction coefficients[19] be-
tweenmb/2 and 2mb. This may be compared to the predicti
of Beneke and Neubert[20] who use QCD factorization the
orems for two-body decays to work beyond leading order
include the effects of hard-scattering terms, obtaining for
same ratio, 0.66+0.13

−0.08 GeV2. The uncertainty in their predictio
is dominated by the uncertainty in the light-cone distribut
amplitudes (LCDAs) of theB- andπ -mesons. Bauer et al.[13,
21] evaluate the same factorization theorems using a diffe
strategy: they use experimental results for otherB → ππ de-
cays to determine the part involving the LCDAs from da
which is possible if all power corrections, and perturbat
corrections of orderαs(mb), are neglected. For the ratio(14)
they find 1.27+0.22

−0.29 GeV2, where we display only experiment
errors. The semileptonic data provides important informa
on otherwise poorly constrained hadronic parameters ente
these processes.

As a second application, the parameterδ measuring the rel
ative size of hard-scattering and soft-overlap contribution
theB → π form factor can be related to the slope of the fo
factor atq2 = 0 [12]. Extrapolated to zero recoil, the lattic
calculations in[5,6] give for the slope of theF0 form factor,
β ≡ [(m2

B − mπ)2F ′
0(0)/F+(0)]−1 = 1.2± 0.1. Together with

(13) this yields

δ ≡ 1− m2
B − m2

π

F+(0)

(
dF+
dq2

∣∣∣∣
2

− dF0

dq2

∣∣∣∣
2

)

q =0 q =0
-

d
s
e,
-

se

r

i-
ar

-
ed
s-

to

s

d
e

t

g

(15)= 0.4± 0.6± 0.1± 0.4,

where the first error is experimental, the second is theore
from the lattice determination ofβ, and the third is due to th
form-factor shape uncertainty in(13). Establishing the relative
size of the hard-scattering and soft-overlap contributions f
the semileptonic data provides another important input to
torization analyses of hadronicB decays. The above result fo
δ does not unambiguously establishδ �= 0 which signals the
presence of hard-scattering terms, but it disfavors the opp
scenario,δ ≈ 2, where the form factor is completely dominat
by hard-scattering. More data will help reduce both the exp
mental and shape-uncertainty errors for this quantity.

As a third application, the form factorF+(0) and shape ob
servableα determine the coupling constantgB∗Bπ via

(16)
fB∗gB∗Bπ

2mB∗
≡ F+(0)

1− α
= 2.0+0.6

−1.6 ± 0.2± 1.7,

where the first error is experimental, the second is theore
from the lattice form-factor normalization, and the final erro
due to the form-factor shape uncertainty, determined as in(13).
Since the semileptonic data is concentrated at smallq2, it is not
very sensitive to the detailed structure of the sub-threshold
and dispersive integral in(1). In fact, the data do not yet defin
itively resolve a distinct contribution of theB∗ pole, although
the opposite scenario—dominance by theB∗ pole in (1)—is
ruled out[12].

Our implementation of the bounds in(8) and (9)could be
formalized in terms of standard methods of constrained c
fitting [22]. In this language, we have enforced a “prior” pro
ability function which is constant if the parameters obey
bound on

∑
k |ρk| or

∑
k a2

k , and zero otherwise. For simplic
ity, we then performed aχ2 fit, assuming sufficient statistic
that the data is Gaussian distributed. The resulting error
mates should be conservative. Firstly, this prior allows eq
probability for parameter values that are near the bound,
though we believe such values are increasingly unlikely. O
prior functions may be considered—for example, in the cas
the series parameterization(5), a Gaussian prior on the variab
(− log10

∑
k a2

k ), with mean and standard deviation of ord
unity. Secondly, in estimating errors based on�χ2, we neglect
the fact that bounds enforce restrictions that renormalize
probability distributions, and to the extent that the bounds
relevant, this tends to overestimate errors. As a simple exam
if an absolute bound happened to coincide with the bou
ary of the “1σ ” interval obtained for an observable based
�χ2 = 1, we would estimate that the observable was within
interval with only∼ 68% confidence, whereas the bounds gu
antee this with 100% confidence. In a more refined analys
direct evaluation of the statistical integrals could account
such boundary effects. An alternative procedure employe
[9], and generalized in[23] to include shape information from
experiment, has a slightly more complicated statistical inter
tation. Here theory information on the form factor, combin
with the dispersive bounds, is used to generate a statistical
ple of “envelopes”, each consisting of the curves defined at
q2-point by the minimum and maximum values that the fo
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factor can take. (Note that some curves may be ruled out b
bounds, yet allowed by the envelopes, which are generate
extremizing point-by-point inq2.) This sample of envelopes
then combined with experimental branching fractions to de
mine a distribution for|Vub| or other observables. Working i
terms of parametersak allows the experimental and lattice da
to be treated on the same footing, and yields a more straigh
ward interpretation of the constraints enforced by the bou
Fortunately, these complications play an extremely minor
in the case of|Vub|. As illustrated byFig. 1, the errors are ver
nearly Gaussian, and nearly identical results are obtained u
different parameterizations, and widely different values for
bounds. A more refined statistical analysis might be usefu
those shape observables that show sensitivity to the bound
extract as much information as possible from the experime
data.

In summary, we have shown that the form-factor shape
formation necessary for a precise extraction of|Vub| is now
entirely determined from experiment. Rather than relying
theoretical models for this shape, the current and future ex
imental data can instead be used as a precision tool for
ing theory predictions and determining hadronic paramete
other processes. For example, the ratio in(14) should be pre-
dicted with good accuracy from the factorization approach
hadronicB decays, and can be even more firmly establis
once the hard-scattering contribution in(15)is determined more
precisely from data. The methodology employed here fo
B decays can be validated in the analogous situation of s
leptonicD decays, where experiment and lattice cover the
tire range ofq2. Note that we only used lattice input for th
form factor at a singleq2-value, to avoid theoretical biases o
the form-factor shape, and to emphasize the conclusion
the shape is determined by experiment; however, studying
form-factor shape provides an important test of lattice ca
lations. Our results show that with improved lattice data,
exclusive measurement of|Vub| that rivals or even surpass
the inclusive determination is possible.
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