271 research outputs found
Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes
Less than 3% of the known exoplanets were directly imaged for two main
reasons. They are angularly very close to their parent star, which is several
magnitudes brighter. Direct imaging of exoplanets thus requires a dedicated
instrumentation with large telescopes and accurate wavefront control devices
for high-angular resolution and coronagraphs for attenuating the stellar light.
Coronagraphs are usually chromatic and they cannot perform high-contrast
imaging over a wide spectral bandwidth. That chromaticity will be critical for
future instruments. Enlarging the coronagraph spectral range is a challenge for
future exoplanet imaging instruments on both space-based and ground-based
telescopes. We propose the multi-stage four-quadrant phase mask that associates
several monochromatic four-quadrant phase mask coronagraphs in series.
Monochromatic device performance has already been demonstrated and the
manufacturing procedures are well-under control since their development for
previous instruments on VLT and JWST. The multi-stage implementation simplicity
is thus appealing. We present the instrument principle and we describe the
laboratory performance for large spectral bandwidths and for both pupil shapes
for space- (off-axis telescope) and ground-based (E-ELT) telescopes. The
multi-stage four-quadrant phase mask reduces the stellar flux over a wide
spectral range (30%) and it is a very good candidate to be associated with a
spectrometer for future exoplanet imaging instruments in ground- and
space-based observatories.Comment: 7 pages, 11 figures, 4 tables, accepted in A&
Theory and laboratory tests of the multi-stage phase mask coronagraph
A large number of coronagraphs have been proposed to overcome the ratio that
exists between the star and its planet. The planet finder of the Extremely
Large Telescope, which is called EPICS, will certainly need a more efficient
coronagraph than the ones that have been developed so far. We propose to use a
combination of chromatic Four Quadrant Phase Mask coronagraph to achromatize
the dephasing of the device while maintaining a high rejection performance.
After describing this multi-stage FQPM coronagraph, we show preliminary results
of a study on its capabilities in the framework of the EPICS instrument, the
planet finder of the European Extremely Large Telescope. Eventually, we present
laboratory tests of a rough prototype of a multi-stage four-quadrant phase
mask. On one hand, we deduce from our laboratory data that a detection at the
10^-10 level is feasible in monochromatic light. On the other hand, we show the
detection of a laboratory companion fainter than 10^-8 with a spectral
bandwidth larger than 20%.Comment: 9 pages, 9 figures, To appear in SPIE proceeding- conference 7015
held in Marseille in June 200
High-contrast imaging at small separation: impact of the optical configuration of two deformable mirrors on dark holes
The direct detection and characterization of exoplanets will be a major
scientific driver over the next decade, involving the development of very large
telescopes and requires high-contrast imaging close to the optical axis. Some
complex techniques have been developed to improve the performance at small
separations (coronagraphy, wavefront shaping, etc). In this paper, we study
some of the fundamental limitations of high contrast at the instrument design
level, for cases that use a combination of a coronagraph and two deformable
mirrors for wavefront shaping. In particular, we focus on small-separation
point-source imaging (around 1 /D). First, we analytically or
semi-analytically analysing the impact of several instrument design parameters:
actuator number, deformable mirror locations and optic aberrations (level and
frequency distribution). Second, we develop in-depth Monte Carlo simulation to
compare the performance of dark hole correction using a generic test-bed model
to test the Fresnel propagation of multiple randomly generated optics static
phase errors. We demonstrate that imaging at small separations requires large
setup and small dark hole size. The performance is sensitive to the optic
aberration amount and spatial frequencies distribution but shows a weak
dependence on actuator number or setup architecture when the dark hole is
sufficiently small (from 1 to 5 /D).Comment: 13 pages, 18 figure
Focal plane wavefront sensor achromatization : The multireference self-coherent camera
High contrast imaging and spectroscopy provide unique constraints for
exoplanet formation models as well as for planetary atmosphere models. But this
can be challenging because of the planet-to-star small angular separation and
high flux ratio. Recently, optimized instruments like SPHERE and GPI were
installed on 8m-class telescopes. These will probe young gazeous exoplanets at
large separations (~1au) but, because of uncalibrated aberrations that induce
speckles in the coronagraphic images, they are not able to detect older and
fainter planets. There are always aberrations that are slowly evolving in time.
They create quasi-static speckles that cannot be calibrated a posteriori with
sufficient accuracy. An active correction of these speckles is thus needed to
reach very high contrast levels (>1e7). This requires a focal plane wavefront
sensor. Our team proposed the SCC, the performance of which was demonstrated in
the laboratory. As for all focal plane wavefront sensors, these are sensitive
to chromatism and we propose an upgrade that mitigates the chromatism effects.
First, we recall the principle of the SCC and we explain its limitations in
polychromatic light. Then, we present and numerically study two upgrades to
mitigate chromatism effects: the optical path difference method and the
multireference self-coherent camera. Finally, we present laboratory tests of
the latter solution.
We demonstrate in the laboratory that the MRSCC camera can be used as a focal
plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640
nm. We reach a performance that is close to the chromatic limitations of our
bench: contrast of 4.5e-8 between 5 and 17 lambda/D.
The performance of the MRSCC is promising for future high-contrast imaging
instruments that aim to actively minimize the speckle intensity so as to detect
and spectrally characterize faint old or light gaseous planets.Comment: 14 pages, 20 figure
Analysis of ground-based differential imager performance
In the context of extrasolar planet direct detection, we evaluated the
performance of differential imaging with ground-based telescopes. This study
was carried out in the framework of the VLT-Planet Finder project and is
further extended to the case of Extremely Large Telescopes. Our analysis is
providing critical specifications for future instruments mostly in terms of
phase aberrations but also regarding alignments of the instrument optics or
offset pointing on the coronagraph. It is found that Planet Finder projects on
8m class telescopes can be successful at detecting Extrasolar Giant Planets
providing phase aberrations, alignments and pointing are accurately controlled.
The situation is more pessimistic for the detection of terrestrial planets with
Extremely Large Telescopes for which phase aberrations must be lowered at a
very challenging level
Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed
Specific high contrast imaging instruments are mandatory to characterize
circumstellar disks and exoplanets around nearby stars. Coronagraphs are
commonly used in these facilities to reject the diffracted light of an observed
star and enable the direct imaging and spectroscopy of its circumstellar
environment. One important property of the coronagraph is to be able to work in
broadband light.
Among several proposed coronagraphs, the dual-zone phase mask coronagraph is
a promising solution for starlight rejection in broadband light. In this paper,
we perform the first validation of this concept in laboratory.
First, we recall the principle of the dual-zone phase mask coronagraph. Then,
we describe the high-contrast imaging THD testbed, the manufacturing of the
components and the quality-control procedures. Finally, we study the
sensitivity of our coronagraph to low-order aberrations (inner working angle
and defocus) and estimate its contrast performance. Our experimental broadband
light results are compared with numerical simulations to check agreement with
the performance predictions.
With the manufactured prototype and using a dark hole technique based on the
self-coherent camera, we obtain contrast levels down to between 5
and 17 in monochromatic light (640 nm). We also reach contrast
levels of between 7 and 17 in broadband
( nm, nm and %), which demonstrates the excellent chromatic performance of the dual-zone
phase mask coronagraph.
The performance reached by the dual-zone phase mask coronagraph is promising
for future high-contrast imaging instruments that aim at detecting and
spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure
Exoplanet direct imaging in ground-based conditions on THD2 bench
The next generation of ground-based instruments aims to break through the
knowledge we have on exoplanets by imaging circumstellar environments always
closer to the stars. However, direct imaging requires an AO system and
high-contrast techniques like a coronagraph to reject the diffracted light of
an observed star and an additional wavefront sensor to control quasi-static
aberrations, including the non common path aberrations. To observe faint
objects, a focal plane wavefront sensor with a sub-nanometric wavefront control
capability is required. In the past few years, we developed the THD2 bench
which is a testbed for high-contrast imaging techniques, working in visible and
near infrared wavelengths and currently reaching contrast levels lower than
1e-8 under space-like simulated conditions. We recently added a turbulence
wheel on the optical path which simulates the residuals given by a typical
extreme adaptive optics system and we tested several ways to remove
quasi-statics speckles. One way to estimate the aberrations is a method called
pair-wise probing where we record few images with known-shapes we apply on the
adaptive optics deformable mirror. Once estimated, we seek to minimize the
focal-plane electric field by an algorithm called Electric Field Conjugation.
In this paper, we present the first results obtained on the THD2 bench using
these two techniques together in turbulent conditions. We then compare the
achieved performance with the one expected when all the quasi-static speckles
are corrected.Comment: 9 pages, 3 figures, AO4ELT6 Qu\'ebec cit
Comparison of coronagraphs for high contrast imaging in the context of Extremely Large Telescopes
We compare coronagraph concepts and investigate their behavior and
suitability for planet finder projects with Extremely Large Telescopes (ELTs,
30-42 meters class telescopes). For this task, we analyze the impact of major
error sources that occur in a coronagraphic telescope (central obscuration,
secondary support, low-order segment aberrations, segment reflectivity
variations, pointing errors) for phase, amplitude and interferometric type
coronagraphs. This analysis is performed at two different levels of the
detection process: under residual phase left uncorrected by an eXtreme Adaptive
Optics system (XAO) for a large range of Strehl ratio and after a general and
simple model of speckle calibration, assuming common phase aberrations between
the XAO and the coronagraph (static phase aberrations of the instrument) and
non-common phase aberrations downstream of the coronagraph (differential
aberrations provided by the calibration unit). We derive critical parameters
that each concept will have to cope with by order of importance. We evidence
three coronagraph categories as function of the accessible angular separation
and proposed optimal one in each case. Most of the time amplitude concepts
appear more favorable and specifically, the Apodized Pupil Lyot Coronagraph
gathers the adequate characteristics to be a baseline design for ELTs.Comment: 12 pages, 6 figures, Accepted for publication in A&
- …