38 research outputs found

    Expression of chemokine receptors CXCR1 and CXCR2 during cardiopulmonary bypass

    Get PDF
    AbstractObjective: This study investigated the effects of cardiopulmonary bypass on neutrophil expression of chemokine receptors, CXCR1 and CXCR2, and the β2 integrin CD11b. Methods: Ten patients undergoing coronary artery grafting with cardiopulmonary bypass were studied. Blood samples were collected preoperatively, before bypass, at termination of bypass, and 12 to 18 hours postoperatively. In vitro studies were performed on control subjects to determine changes in the surface expression of CXCR1, CXCR2, and CD11b on stimulation with interleukin 8. Receptor expression was measured by flow cytometry. Plasma levels of interleukin 8 from the patients were determined by enzyme-linked immunoassay. Results: After bypass, CXCR2 expression fell by 66% (P <.0001) and remained low postoperatively (P <.0001). CXCR1 expression persisted at preoperative levels. CD11b expression increased significantly after bypass (P <.0001), returning to prebypass levels postoperatively. In vitro studies showed a dose-related fall of both CXCR1 (P <.0001) and CXCR2 expression (P <.0001) and a significant rise in CD11b expression (P <.0001). Plasma interleukin 8 increased significantly after bypass (P <.0001), remaining elevated 12 to 18 hours postoperatively (P =.02). Correlations between interleukin 8 levels and CXCR2 expression (P <.0001) and CD11b expression (P <.03) were demonstrated. Conclusions: CXCR2 expression is significantly down-regulated after bypass; in contrast, CXCR1 expression remains unchanged. In addition, whereas interleukin 8 is an important determinant of both CXCR1 and CXCR2 expression in vitro, it only correlates with CXCR2 and CD11b expression in vivo. This has implications in the search for antagonists against CXC chemokines and their receptor

    A national survey of the diagnosis and management of suspected ventilator-associated pneumonia.

    Get PDF
    BACKGROUND: Ventilator-associated pneumonia (VAP) affects up to 20% of patients admitted to intensive care units (ICU). It is associated with increased morbidity, mortality and healthcare costs. Despite published guidelines, variability in diagnosis and management exists, the extent of which remains unclear. We sought to characterise consultant opinions surrounding diagnostic and management practice for VAP in the UK. METHODS: An online survey was sent to all consultant members of the UK Intensive Care Society (n=∼1500). Data were collected regarding respondents' individual practice in the investigation and management of suspected VAP including use of diagnostic criteria, microbiological sampling, chest X-ray (CXR), bronchoscopy and antibiotic treatments. RESULTS: 339 (23%) responses were received from a broadly representative spectrum of ICU consultants. All respondents indicated that microbiological confirmation should be sought, the majority (57.8%) stating they would take an endotracheal aspirate prior to starting empirical antibiotics. Microbiology reporting services were described as qualitative only by 29.7%. Only 17% of respondents had access to routine reporting of CXRs by a radiologist. Little consensus exists regarding technique for bronchoalveolar lavage (BAL) with the reported volume of saline used ranging from 5 to 500 mL. 24.5% of consultants felt inadequately trained in bronchoscopy. CONCLUSIONS: There is wide variability in the approach to diagnosis and management of VAP among UK consultants. Such variability challenges the reliability of the diagnosis of VAP and its reported incidence as a performance indicator in healthcare systems. The data presented suggest increased radiological and microbiological support, and standardisation of BAL technique, might improve this situation

    Guidelines on the management of acute respiratory distress syndrome.

    Get PDF
    The Faculty of Intensive Care Medicine and Intensive Care Society Guideline Development Group have used GRADE methodology to make the following recommendations for the management of adult patients with acute respiratory distress syndrome (ARDS). The British Thoracic Society supports the recommendations in this guideline. Where mechanical ventilation is required, the use of low tidal volumes (<6 ml/kg ideal body weight) and airway pressures (plateau pressure <30 cmH2O) was recommended. For patients with moderate/severe ARDS (PF ratio<20 kPa), prone positioning was recommended for at least 12 hours per day. By contrast, high frequency oscillation was not recommended and it was suggested that inhaled nitric oxide is not used. The use of a conservative fluid management strategy was suggested for all patients, whereas mechanical ventilation with high positive end-expiratory pressure and the use of the neuromuscular blocking agent cisatracurium for 48 hours was suggested for patients with ARDS with ratio of arterial oxygen partial pressure to fractional inspired oxygen (PF) ratios less than or equal to 27 and 20 kPa, respectively. Extracorporeal membrane oxygenation was suggested as an adjunct to protective mechanical ventilation for patients with very severe ARDS. In the absence of adequate evidence, research recommendations were made for the use of corticosteroids and extracorporeal carbon dioxide removal

    Randomised controlled trial of GM-CSF in critically ill patients with impaired neutrophil phagocytosis

    Get PDF
    Background. Critically ill patients with impaired neutrophil phagocytosis have significantly increased risk of nosocomial infection. Granulocyte-macrophage colony-stimulating factor (GM-CSF) improves phagocytosis by neutrophils ex vivo. This study tested the hypothesis that GM-CSF improves neutrophil phagocytosis in critically ill patients in whom phagocytosis is known to be impaired Methods. This was a multi-centre, phase 2a randomised, placebo-controlled clinical trial Using a personalised medicine approach, only critically ill patients with impaired neutrophil phagocytosis were included. Patients were randomised 1:1 to subcutaneous GM-CSF (3 microgrammws/kg/day) or placebo, once daily for 4 days. The primary outcome measure was neutrophil phagocytosis 2 days after initiation of GM-CSF. Secondary outcomes included neutrophil phagocytosis over time, neutrophil functions other than phagocytosis, monocyte HLA-DR expression, and safety. Results. Thirty-eight patients were recruited from 5 intensive care units (17 randomised to GM-CSF). Mean neutrophil phagocytosis at day 2 was 57.2% (SD 13.2%) in the GM-CSF group and 49.8% (13.4%) in the placebo group, p=0.73. The proportion of patients with neutrophil phagocytosis >50% at day 2, and monocyte HLA-DR, appeared significantly higher in the GM-CSF group. Neutrophil functions other than phagocytosis did not appear significantly different between the groups. The most common adverse event associated with GM-CSF was pyrexia. Conclusions. GM-CSF did not improve mean neutrophil phagocytosis at day 2, but was safe and appeared to increase the proportion of patients with adequate phagocytosis. The study suggests proof of principle for a pharmacological effect on neutrophil function in a subset of critically ill patients.This work was funded by a grant from the Medical Research Council (G1100233), with additional support from the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre. It was sponsored by Newcastle Universit

    Diagnostic accuracy of pulmonary host inflammatory mediators in the exclusion of ventilator-acquired pneumonia.

    Get PDF
    BACKGROUND: Excessive use of empirical antibiotics is common in critically ill patients. Rapid biomarker-based exclusion of infection may improve antibiotic stewardship in ventilator-acquired pneumonia (VAP). However, successful validation of the usefulness of potential markers in this setting is exceptionally rare. OBJECTIVES: We sought to validate the capacity for specific host inflammatory mediators to exclude pneumonia in patients with suspected VAP. METHODS: A prospective, multicentre, validation study of patients with suspected VAP was conducted in 12 intensive care units. VAP was confirmed following bronchoscopy by culture of a potential pathogen in bronchoalveolar lavage fluid (BALF) at >10(4) colony forming units per millilitre (cfu/mL). Interleukin-1 beta (IL-1β), IL-8, matrix metalloproteinase-8 (MMP-8), MMP-9 and human neutrophil elastase (HNE) were quantified in BALF. Diagnostic utility was determined for biomarkers individually and in combination. RESULTS: Paired BALF culture and biomarker results were available for 150 patients. 53 patients (35%) had VAP and 97 (65%) patients formed the non-VAP group. All biomarkers were significantly higher in the VAP group (p<0.001). The area under the receiver operator characteristic curve for IL-1β was 0.81; IL-8, 0.74; MMP-8, 0.76; MMP-9, 0.79 and HNE, 0.78. A combination of IL-1β and IL-8, at the optimal cut-point, excluded VAP with a sensitivity of 100%, a specificity of 44.3% and a post-test probability of 0% (95% CI 0% to 9.2%). CONCLUSIONS: Low BALF IL-1β in combination with IL-8 confidently excludes VAP and could form a rapid biomarker-based rule-out test, with the potential to improve antibiotic stewardship

    Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2) : a randomised controlled trial and process evaluation

    Get PDF
    Background Ventilator-associated pneumonia is the most common intensive care unit (ICU)-acquired infection, yet accurate diagnosis remains difficult, leading to overuse of antibiotics. Low concentrations of IL-1β and IL-8 in bronchoalveolar lavage fluid have been validated as effective markers for exclusion of ventilator-associated pneumonia. The VAPrapid2 trial aimed to determine whether measurement of bronchoalveolar lavage fluid IL-1β and IL-8 could effectively and safely improve antibiotic stewardship in patients with clinically suspected ventilator-associated pneumonia. Methods VAPrapid2 was a multicentre, randomised controlled trial in patients admitted to 24 ICUs from 17 National Health Service hospital trusts across England, Scotland, and Northern Ireland. Patients were screened for eligibility and included if they were 18 years or older, intubated and mechanically ventilated for at least 48 h, and had suspected ventilator-associated pneumonia. Patients were randomly assigned (1:1) to biomarker-guided recommendation on antibiotics (intervention group) or routine use of antibiotics (control group) using a web-based randomisation service hosted by Newcastle Clinical Trials Unit. Patients were randomised using randomly permuted blocks of size four and six and stratified by site, with allocation concealment. Clinicians were masked to patient assignment for an initial period until biomarker results were reported. Bronchoalveolar lavage was done in all patients, with concentrations of IL-1β and IL-8 rapidly determined in bronchoalveolar lavage fluid from patients randomised to the biomarker-based antibiotic recommendation group. If concentrations were below a previously validated cutoff, clinicians were advised that ventilator-associated pneumonia was unlikely and to consider discontinuing antibiotics. Patients in the routine use of antibiotics group received antibiotics according to usual practice at sites. Microbiology was done on bronchoalveolar lavage fluid from all patients and ventilator-associated pneumonia was confirmed by at least 104 colony forming units per mL of bronchoalveolar lavage fluid. The primary outcome was the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage. Data were analysed on an intention-to-treat basis, with an additional per-protocol analysis that excluded patients randomly assigned to the intervention group who defaulted to routine use of antibiotics because of failure to return an adequate biomarker result. An embedded process evaluation assessed factors influencing trial adoption, recruitment, and decision making. This study is registered with ISRCTN, ISRCTN65937227, and ClinicalTrials.gov, NCT01972425. Findings Between Nov 6, 2013, and Sept 13, 2016, 360 patients were screened for inclusion in the study. 146 patients were ineligible, leaving 214 who were recruited to the study. Four patients were excluded before randomisation, meaning that 210 patients were randomly assigned to biomarker-guided recommendation on antibiotics (n=104) or routine use of antibiotics (n=106). One patient in the biomarker-guided recommendation group was withdrawn by the clinical team before bronchoscopy and so was excluded from the intention-to-treat analysis. We found no significant difference in the primary outcome of the distribution of antibiotic-free days in the 7 days following bronchoalveolar lavage in the intention-to-treat analysis (p=0·58). Bronchoalveolar lavage was associated with a small and transient increase in oxygen requirements. Established prescribing practices, reluctance for bronchoalveolar lavage, and dependence on a chain of trial-related procedures emerged as factors that impaired trial processes

    Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses

    Get PDF
    In order to limit the adverse effects of excessive inflammation, anti-inflammatory responses are stimulated at an early stage of an infection, but during sepsis these can lead to deactivation of immune cells including monocytes. In addition, there is emerging evidence that the up-regulation of mitochondrial quality control mechanisms, including mitochondrial biogenesis and mitophagy, is important during the recovery from sepsis and inflammation. We aimed to describe the relationship between the compensatory immune and mitochondrial responses that are triggered following exposure to an inflammatory stimulus in human monocytic cells. Incubation with lipopolysaccharide resulted in a change in the immune phenotype of THP-1 cells consistent with the induction of endotoxin tolerance, similar to that seen in deactivated septic monocytes. After exposure to LPS there was also early evidence of oxidative stress, which resolved in association with the induction of antioxidant defenses and the stimulation of mitochondrial degradation through mitophagy. This was compensated by a parallel up-regulation of mitochondrial biogenesis that resulted in an overall increase in mitochondrial respiratory activity. These observations improve our understanding of the normal homeostatic responses that limit the adverse cellular effects of unregulated inflammation, and which may become ineffective when an infection causes sepsis
    corecore