4 research outputs found

    Salvage Stereotactic Reirradiation for Local Recurrence in the Prostatic Bed After Prostatectomy: A Retrospective Multicenter Study

    Get PDF
    Background: Management of local recurrence of prostate cancer (PCa) in the prostatic bed after radical prostatectomy (RP) and radiotherapy remains challenging. Objective: To assess the efficacy and safety of salvage stereotactic body radiotherapy (SBRT) reirradiation in this setting and evaluate prognostic factors. Design, setting, and participants: We conducted a large multicenter retrospective series that included 117 patients who were treated with salvage SBRT for local recurrence in the prostatic bed after RP and radiotherapy in 11 centers across three countries. Outcome measurements and statistical analysis: Progression-free survival (PFS; biochemical, clinical, or both) was estimated using the Kaplan-Meier method. Biochemical recurrence was defined as prostate-specific antigen nadir +0.2 ng/ml, confirmed by a second increasing measure. The cumulative incidence of late toxicities was estimated using the Kalbfleisch-Prentice method by considering recurrence or death as a competing event. Results and limitations: The median follow-up was 19.5 mo. The median SBRT dose was 35 Gy. The median PFS was 23.5 mo (95% confidence interval [95% CI], 17.6-33.2). In the multivariable models, the volume of the recurrence and its contact with the urethrovesical anastomosis were significantly associated with PFS (hazard ratio [HR]/10 cm3 = 1.46; 95% CI, 1.08-1.96; p = 0.01 and HR = 3.35; 95% CI, 1.38-8.16; p = 0.008, respectively). The 3-yr cumulative incidence of grade ≥2 late GU or GI toxicity was 18% (95% CI, 10-26). In the multivariable analysis, a recurrence in contact with the urethrovesical anastomosis and D2% of the bladder were significantly associated with late toxicities of any grade (HR = 3.65; 95% CI, 1.61-8.24; p = 0.002 and HR/10 Gy = 1.88; 95% CI, 1.12-3.16; p = 0.02, respectively). Conclusions: Salvage SBRT for local recurrence in the prostate bed may offer encouraging control and acceptable toxicity. Therefore, further prospective studies are warranted. Patient summary: We found that salvage stereotactic body radiotherapy after surgery and radiotherapy allows for encouraging control and acceptable toxicity in locally relapsed prostate cancer

    Achievable Dosimetric Constraints in Stereotactic Reirradiation for Recurrent Prostate Cancer

    No full text
    International audiencePURPOSE: Stereotactic body radiation therapy has been proposed as a salvage treatment for recurrent prostate cancer after irradiation. One crucial issue is choosing appropriate dose-volume constraints (DVCs) during planning. The objectives of this study were to (1) quantify the proportion of patients respecting the DVCs according to the Urogenital Tumor Study Group GETUG-31 trial, testing 36 Gy in six fractions, (2) explain geometrically why the DVCs could not be respected, and (3) propose the most suitable DVCs. METHODS AND MATERIALS: This retrospective dosimetric analysis included 141 patients treated for recurrent prostate cancer with Cyberknife (Accuray), according to GETUG-31 DVCs: V(95%) ≥ 95% for the planning target volume (PTV), V(12Gy) < 20% and V(27Gy) < 2 cc for the rectum, and V(12Gy) < 15% and V(27Gy) < 5 cc for the bladder. The percentage of patients not respecting the DVCs was quantified. Correlations between the DVCs and anatomic structures were examined. New DVCs were proposed. RESULTS: Only 19% of patients respected all DVCs, with a mean PTV of 18.5 cc (range, 3-48 cc), although the mean PTV was 40.5 cc (range, 3-174 cc) in the whole series. A total of 98% of the patients with a clinical target volume (CTV)/prostate ratio >0.5 could not respect the DVCs in the organs at risk. The target coverage and organ-at-risk sparing decreased significantly with increase in the values of PTV, CTV, CTV/prostate ratio, the overlapping volume between the PTV and bladder wall and between the PTV and rectal wall. Threshold values of PTV, >20 cc and 40 cc, allowed for the PTV and bladder DVCs, respectively. To improve DVC respect in case of large target volume, we proposed the following new DVCs: V(12Gy) < 25% and 25% and V(27Gy) < 2 cc and 5 cc for the rectum and bladder, respectively. CONCLUSIONS: GETUG-31 DVCs are achievable only for small target volumes (CTV more than half of the prostate). For a larger target volume, new DVCs have been proposed

    Sexual Structure Sparing for Prostate Cancer Radiotherapy: A Systematic Review

    No full text
    International audienceContext: Erectile dysfunction represents a major side effect of prostate cancer (PCa) treatment, negatively impacting men's quality of life. While radiation therapy (RT) advances have enabled the mitigation of both genitourinary and gastrointestinal toxicities, no significant improvement has been showed in sexual quality of life over time.Objective: The primary aim of this review was to assess sexual structures' dose-volume parameters associated with the onset of erectile dysfunction.Evidence acquisition: We searched the PubMed database and ClinicalTrials.gov until January 4, 2023. Studies reporting the impact of the dose delivered to sexual structures on sexual function or the feasibility of innovative sexual structure-sparing approaches were deemed eligible.Evidence synthesis: Sexual-sparing strategies have involved four sexual organs. The mean penile bulb doses exceeding 20 Gy are predictive of erectile dysfunction in modern PCa RT trial. Maintaining a D100% of ≤36 Gy on the internal pudendal arteries showed preservation of erectile function in 88% of patients at 5 yr. Neurovascular bundle sparing appears feasible with magnetic resonance-guided radiation therapy, yet its clinical impact remains unanswered. Doses delivered to the testicles during PCa RT usually remain <2 Gy and generate a decrease in testosterone levels ranging from -4.6% to -17%, unlikely to have any clinical impact.Conclusions: Current data highlight the technical feasibility of sexual sparing for PCa RT. The proportion of erectile dysfunction attributable to the dose delivered to sexual structures is still largely unknown. While the ability to maintain sexual function over time is impacted by factors such as age or comorbidities, only selected patients are likely to benefit from sexual-sparing RT.Patient summary: Technical advances in radiation therapy (RT) made it possible to significantly lower the dose delivered to sexual structures. While sexual function is known to decline with age, the preservation of sexual structures for prostate cancer RT is likely to be beneficial only in selected patients
    corecore