156 research outputs found

    CMB Observations: improvements of the performance of correlation radiometers by signal modulation and synchronous detection

    Get PDF
    Observation of the fine structures (anisotropies, polarization, spectral distortions) of the Cosmic Microwave Background (CMB) is hampered by instabilities, 1/f noise and asymmetries of the radiometers used to carry on the measurements. Addition of modulation and synchronous detection allows to increase the overall stability and the noise rejection of the radiometers used for CMB studies. In this paper we discuss the advantages this technique has when we try to detect CMB polarization. The behaviour of a two channel correlation receiver to which phase modulation and synchronous detection have been added is examined. Practical formulae for evaluating the improvements are presented.Comment: 18 pages, 3 figures, New Astronomy accepte

    Far infrared polarimeter with very low instrumental polarization

    Full text link
    After a short analysis of the main problems involved in the construction of a Far Infrared polarimeter with very low instrumental noise, we describe the instrument that will be employed at MITO telescope to search for calibration sources and investigate polarization near the CMB anisotropy peaks in the next campaign (Winter 2002-03).Comment: 9 pages, 5 figures, to appear in SPIE conference proceedings "Astronomical telescopes and instrumentation

    Recent results and perspectives on cosmology and fundamental physics from microwave surveys

    Get PDF
    Recent cosmic microwave background data in temperature and polarization have reached high precision in estimating all the parameters that describe the current so-called standard cosmological model. Recent results about the integrated Sachs-Wolfe effect from cosmic microwave background anisotropies, galaxy surveys, and their cross-correlations are presented. Looking at fine signatures in the cosmic microwave background, such as the lack of power at low multipoles, the primordial power spectrum and the bounds on non-Gaussianities, complemented by galaxy surveys, we discuss inflationary physics and the generation of primordial perturbations in the early Universe. Three important topics in particle physics, the bounds on neutrinos masses and parameters, on thermal axion mass and on the neutron lifetime derived from cosmological data are reviewed, with attention to the comparison with laboratory experiment results. Recent results from cosmic polarization rotation analyses aimed at testing the Einstein equivalence principle are presented. Finally, we discuss the perspectives of next radio facilities for the improvement of the analysis of future cosmic microwave background spectral distortion experiments.Comment: 27 pages, 9 figures. Review Article. International Journal of Modern Physics D, in press. [Will appear also on the proceedings of the Fourteenth Marcel Grossmann Meeting University of Rome "La Sapienza" - Rome, July 12-18, 2015 (http://www.icra.it/mg/mg14/), eds. Robert T. Jantzen, Kjell Rosquist, Remo Ruffini. World Scientific, Singapore

    Puzzling large-scale polarization in the galaxy cluster Abell 523

    Get PDF
    Large-scale magnetic fields reveal themselves through diffuse synchrotron sources observed in galaxy clusters such as radio halos. Total intensity filaments of these sources have been observed in polarization as well, but only in three radio halos out of about one hundred currently known. In this paper we analyze new polarimetric Very Large Array data of the diffuse emission in the galaxy cluster Abell 523 in the frequency range 1-2 GHz. We find for the first time evidence of polarized emission on scales of ~ 2.5 Mpc. Total intensity emission is observed only in the central part of the source, likely due to observational limitations. To look for total intensity emission beyond the central region, we combine these data with single-dish observations from the Sardinia Radio Telescope and we compare them with multi-frequency total intensity observations obtained with different instruments, including the LOw Frequency ARray and the Murchison Widefield Array. By analysing the rotation measure properties of the system and utilizing numerical simulations, we infer that this polarized emission is associated with filaments of the radio halo located in the outskirts of the system, in the peripheral region closest to the observer.Comment: 14 pages, 12 figures, accepted for publication on MNRA

    SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer

    Get PDF
    The balloon-borne LSPE mission is optimized to measure the linear polarization of the Cosmic Microwave Background at large angular scales. The Short Wavelength Instrument for the Polarization Explorer (SWIPE) is composed of 3 arrays of multi-mode bolometers cooled at 0.3K, with optical components and filters cryogenically cooled below 4K to reduce the background on the detectors. Polarimetry is achieved by means of large rotating half-wave plates and wire-grid polarizers in front of the arrays. The polarization modulator is the first component of the optical chain, reducing significantly the effect of instrumental polarization. In SWIPE we trade angular resolution for sensitivity. The diameter of the entrance pupil of the refractive telescope is 45 cm, while the field optics is optimized to collect tens of modes for each detector, thus boosting the absorbed power. This approach results in a FWHM resolution of 1.8, 1.5, 1.2 degrees at 95, 145, 245 GHz respectively. The expected performance of the three channels is limited by photon noise, resulting in a final sensitivity around 0.1-0.2 uK per beam, for a 13 days survey covering 25% of the sky.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Cosmological Parameters from Pre-Planck CMB Measurements

    Get PDF
    Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat LCDM cosmological model, constraining six free parameters to within a few percent. The scalar spectral index, n_s = 0.9690 +/- 0.0089, is less than unity at the 3.6 sigma level, consistent with simple models of inflation. The damping tail of the power spectrum at high resolution, combined with the amplitude of gravitational lensing measured by ACT and SPT, constrains the effective number of relativistic species to be N_eff = 3.28 +/- 0.40, in agreement with the standard model's three species of light neutrinos.Comment: 5 pages, 4 figure

    The Atacama Cosmology Telescope: Galactic Dust Structure and the Cosmic PAH Background in Cross-correlation with WISE

    Full text link
    We present a cross-correlation analysis between 11' resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15'' mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.5×^\circ\times12.5^\circ patches of sky. We detect a spatially isotropic signal in the WISE×\timesACT TTTT cross power spectrum at 30σ\sigma significance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dust TTTT spectra are generally well-described by power laws in \ell over the range 103<<^3 < \ell < 104^4, but there is evidence both for variability in the power law index and for non-power law behavior in some regions. We measure a positive correlation between WISE total intensity and ACT EE-mode polarization at 1000< < \ell \lesssim 6000 at >>3σ\sigma in each of 35 distinct \sim100 deg2^2 regions of the sky, suggesting alignment between Galactic density structures and the local magnetic field persists to sub-parsec physical scales in these regions. The distribution of TETE amplitudes in this \ell range across all 107 regions is biased to positive values, while there is no evidence for such a bias in the TBTB spectra. This work constitutes the highest-\ell measurements of the Galactic dust TETE spectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths.Comment: 20 pages, 14 figures, submitted to Ap

    The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    Get PDF
    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6-sigma detection significance.Comment: 21 pages; 20 figures, Submitted to JCAP, some typos correcte

    The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data

    Full text link
    [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding \sigma_8 = 0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain \Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle Physic
    corecore