152 research outputs found

    Anomalies in Ward Identities for Three-Point Functions Revisited

    Full text link
    A general calculational method is applied to investigate symmetry relations among divergent amplitudes in a free fermion model. A very traditional work on this subject is revisited. A systematic study of one, two and three point functions associated to scalar, pseudoscalar, vector and axial-vector densities is performed. The divergent content of the amplitudes are left in terms of five basic objects (external momentum independent). No specific assumptions about a regulator is adopted in the calculations. All ambiguities and symmetry violating terms are shown to be associated with only three combinations of the basic divergent objects. Our final results can be mapped in the corresponding Dimensional Regularization calculations (in cases where this technique could be applied) or in those of Gertsein and Jackiw which we will show in detail. The results emerging from our general approach allow us to extract, in a natural way, a set of reasonable conditions (e.g. crucial for QED consistency) that could lead us to obtain all Ward Identities satisfied. Consequently, we conclude that the traditional approach used to justify the famous triangular anomalies in perturbative calculations could be questionable. An alternative point of view, dismissed of ambiguities, which lead to a correct description of the associated phenomenology, is pointed out.Comment: 26 pages, Revtex, revised version, Refs. adde

    From arbitrariness to ambiguities in the evaluation of perturbative physical amplitudes and their symmetry relations

    Full text link
    A very general calculational strategy is applied to the evaluation of the divergent physical amplitudes which are typical of perturbative calculations. With this approach in the final results all the intrinsic arbitrariness of the calculations due to the divergent character is still present. We show that by using the symmetry properties as a guide to search for the (compulsory) choices in such a way as to avoid ambiguities, a deep and clear understanding of the role of regularization methods emerges. Requiring then an universal point of view for the problem, as allowed by our approach, very interesting conclusions can be stated about the possible justifications of most intriguing aspect of the perturbative calculations in quantum field theory: the triangle anomalies.Comment: 16 pages, no figure

    Consistency in Regularizations of the Gauged NJL Model at One Loop Level

    Get PDF
    In this work we revisit questions recently raised in the literature associated to relevant but divergent amplitudes in the gauged NJL model. The questions raised involve ambiguities and symmetry violations which concern the model's predictive power at one loop level. Our study shows by means of an alternative prescription to handle divergent amplitudes, that it is possible to obtain unambiguous and symmetry preserving amplitudes. The procedure adopted makes use solely of {\it general} properties of an eventual regulator, thus avoiding an explicit form. We find, after a thorough analysis of the problem that there are well established conditions to be fulfiled by any consistent regularization prescription in order to avoid the problems of concern at one loop level.Comment: 22 pages, no figures, LaTeX, to appear in Phys.Rev.

    Stationary solutions for the parity-even sector of the CPT-even and Lorentz-covariance-violating term of the standard model extension

    Full text link
    In this work, we focus on some properties of the parity-even sector of the CPT-even electrodynamics of the standard model extension. We analyze how the six non-birefringent terms belonging to this sector modify the static and stationary classical solutions of the usual Maxwell theory. We observe that the parity-even terms do not couple the electric and magnetic sectors (at least in the stationary regime). The Green's method is used to obtain solutions for the field strengths E and B at first order in the Lorentz- covariance-violating parameters. Explicit solutions are attained for point-like and spatially extended sources, for which a dipolar expansion is achieved. Finally, it is presented an Earth-based experiment that can lead (in principle) to an upper bound on the anisotropic coefficients as stringent as (κ~e)ij<2.9×1020.(\widetilde{\kappa}_{e-}) ^{ij}<2.9\times10^{-20}.Comment: 8 pages, revtex style, revised published version, to appear in EPJC (2009

    Hadamard magnetization transfers achieve dramatic sensitivity enhancements in homonuclear multidimensional NMR correlations of labile sites in proteins, polysaccharides and nucleic acids

    Full text link
    EXSY, TOCSY and NOESY lie at the foundation of homonuclear NMR experiments in organic and pharmaceutical chemistry, as well as in structural biology. Limited magnetization transfer efficiency is an intrinsic downside of these methods, particularly when targeting rapidly exchanging species such as labile protons ubiquitous in polysaccharides, sidechains and backbones of proteins, and in bases and sugars of nucleic acids: the fast decoherence imparted on these protons through solvent exchanges, greatly reduces their involvement in homonuclear correlation experiments. We have recently discussed how these decoherences can be visualized as an Anti-Zeno Effect, that can be harnessed to enhance the efficiency of homonuclear transfers within Looped PROjected SpectroscopY (L-PROSY) leading to 200-300% enhancements in NOESY and TOCSY cross-peaks for amide groups in biomolecules. This study demonstrates that even larger sensitivity gains per unit time, equivalent to reductions by several hundred-folds in the duration of experiments, can be achieved by looping inversion or using saturation procedures. In the ensuing experiments a priori selected frequencies are encoded according to Hadamard recipes, and subsequently resolved along the indirect dimension via linear combinations. Magnetization-transfer (MT) processes reminiscent of those occurring in CEST provide significant enhancements in the resulting cross-peaks, in only a fraction of acquisition time of a normal 2D experiment. The effectiveness of the ensuing three-way polarization transfer interplay between water, labile and non-labile protons was corroborated experimentally for proteins, homo-oligosaccharides and nucleic acids. In all cases, cross-peaks barely detectable in conventional 2D NMR counterparts, were measured ca. 10-fold faster and with 200-600% signal enhancements by the Hadamard MT counterparts

    A rapid Electrochemical Procedure for the Determination of Hg(0) Produced by Mercury-Reductase: Application for Monitoring Hg-resistant Bacteria Activity

    Get PDF
    In this work, gold microelectrodes are employed as traps for the detection of volatilized metallic mercury produced by mercuric reductase (MerA) extracted from an Hg-resistant Pseudo monas putida strain FB1. The enzymatic reduction of Hg (II) to Hg (0) was induced by NADPH cofactor added to the samples. The amount of Hg(0) accumulated on the gold microelectrode surface was determined by anodic stripping voltammetry (ASV) after transferring the gold microelectrode in an aqueous solution containing 0.1 M HNO3 + 1 M KNO3. Electrochemical measurements were combined with spectrofluorometric assays of NADPH consumption to derive an analytical expression for the detection of a relative MerA activity of different samples with respect to that of P. putida. The method developed here was employed for the rapid determination of MerA produced by bacteria harbored in soft tissues of clams (Ruditapes philippinarum), collected in high Hg polluted sediments of Northern Adriatic Sea in Italy

    Cultivable bacterial communities in brines from perennially icecovered and pristine antarctic lakes: Ecological and biotechnological implications

    Get PDF
    The diversity and biotechnological potentialities of bacterial isolates from brines of three Antarctic lakes of the Northern Victoria Land (namely Boulder Clay and Tarn Flat areas) were first explored. Cultivable bacterial communities were analysed mainly in terms of bacterial response to contaminants (i.e., antibiotics and heavy metals) and oxidation of contaminants (i.e., aliphatic and aromatic hydrocarbons and polychlorobiphenyls). Moreover, the biosynthesis of biomolecules (antibiotics, extracellular polymeric substances and enzymes) with applications for human health and environmental protection was assayed. A total of 74 and 141 isolates were retrieved from Boulder Clay and Tarn Flat brines, respectively. Based on 16S rRNA gene sequence similarities, bacterial isolates represented three phyla, namely Proteobacteria (i.e., Gamma and Alphaproteobacteria), Bacteroidetes and Actinobacteria, with differences encountered among brines. At genus level, Rhodobacter, Pseudomonas, Psychrobacter and Leifsonia members were dominant. Results obtained from this study on the physiological and enzymatic features of coldadapted isolates from Antarctic lake brines provide interesting prospects for possible applications in the biotechnological field through future targeted surveys. Finally, findings on contaminant occurrence and bacterial response suggest that bacteria might be used as bioindicators for tracking human footprints in these remote polar areas

    Late Holocene records of fire and human presence in New Zealand

    Get PDF
    New Zealand, and the South Island in particular, can be considered an excellent test site for the study of the\ud early impact of humans on the environment for two main reasons: the Polynesian settlement occurred only\ud about 700-800 y BP and resulted in abrupt and huge landscape modifications. Burning forest for land clearance\ud impacted dramatically on an ecosystem that was not adapted to fire, changing the composition of the vegetation\ud as documented by sedimentary charcoal and pollen records. Although charcoal data give incontrovertible\ud evidence of some unprecedented fire events right after the arrival of the Maori, its significance as a tracer for local\ud and anthropogenic fire events has been questioned, stressing the need for new markers to confirm and complete the information about human presence and its effective impact.\ud In the present work, faecal sterols and polycyclic aromatic hydrocarbons (PAHs) were individuated as suitable\ud molecular markers and analyzed by GC-MS in a sediment core from Lake Kirkpatrick, located in the Lake\ud Wakatipu catchment at 570 m a.s.l. in the South Island of New Zealand. Coprostanol accounts for about 60%\ud of total sterol content in human faeces, being much less relevant in animal dejections. Together with its\ud degradation product epi-coprostanol, it is well conserved in sedimentary archives and can be highly useful in\ud paleoenvironmental reconstructions of human settlements. PAHs are produced in relevant amounts by combustion in conditions of oxygen depletion, and diagnostic ratios (DR) between specific molecules can be used for inferring fuel and sources.\ud The charcoal record for Lake Kirkpatrick shows major fire episodes around AD 1350, confirmed by corresponding high levels of PAHs ascribable to biomass burning (as further evidenced by DR) at c. AD 1350. Moreover, the same trend is observed also in the fluxes of coprostanol and epi-coprostanol, whose sum results in two peaks at c. AD 1346 and 1351. This finding confirms not only the massive presence of humans in the area and the large use of fire at the time, but also complements and refines the reconstructions enabled by charcoal analysis

    Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: A multi-biomarker reconstruction from Paru Co

    Get PDF
    The fire history of the Tibetan Plateau over centennial to millennial timescales is not well known. Recent ice core studies reconstruct fire history over the past few decades but do not extend through the Holocene. Lacustrine sedimentary cores, however, can provide continuous records of local environmental change on millennial scales during the Holocene through the accumulation and preservation of specific organic molecular biomarkers. To reconstruct Holocene fire events and vegetation changes occurring on the southeastern Tibetan Plateau and the surrounding areas, we used a multi-proxy approach, investigating multiple biomarkers preserved in core sediment samples retrieved from Paru Co, a small lake located in the Nyainqentanglha Mountains (29°47045.600N, 92°21007.200 E; 4845ma.s.l.). Biomarkers include n-alkanes as indicators of vegetation, polycyclic aromatic hydrocarbons (PAHs) as combustion proxies, fecal sterols and stanols (FeSts) as indicators of the presence of humans or grazing animals, and finally monosaccharide anhydrides (MAs) as specific markers of vegetation burning processes. Insolation changes and the associated influence on the Indian summer monsoon (ISM) affect the vegetation distribution and fire types recorded in Paru Co throughout the Holocene. The early Holocene (10.7- 7.5 cal kyr BP) n-alkane ratios demonstrate oscillations between grass and conifer communities, resulting in respective smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by high-molecular-weight PAHs. Forest cover increases with a strengthened ISM, where coincident high levoglucosan to mannosan (L = M) ratios are consistent with conifer burning. The decrease in the ISM at 4.2 cal kyr BP corresponds with the expansion of regional civilizations, although the lack of human FeSts above the method detection limits excludes local anthropogenic influence on fire and vegetation changes. The late Holocene is characterized by a relatively shallow lake surrounded by grassland, where all biomarkers other than PAHs display only minor variations. The sum of PAHs steadily increases throughout the late Holocene, suggesting a net increase in local to regional combustion that is separate from vegetation and climate change

    On the equivalence between Implicit Regularization and Constrained Differential Renormalization

    Full text link
    Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rather distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.Comment: 16 page
    corecore