3,140 research outputs found
Planar L-Drawings of Directed Graphs
We study planar drawings of directed graphs in the L-drawing standard. We
provide necessary conditions for the existence of these drawings and show that
testing for the existence of a planar L-drawing is an NP-complete problem.
Motivated by this result, we focus on upward-planar L-drawings. We show that
directed st-graphs admitting an upward- (resp. upward-rightward-) planar
L-drawing are exactly those admitting a bitonic (resp. monotonically
increasing) st-ordering. We give a linear-time algorithm that computes a
bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or
reports that there exists none.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Planar Embeddings with Small and Uniform Faces
Motivated by finding planar embeddings that lead to drawings with favorable
aesthetics, we study the problems MINMAXFACE and UNIFORMFACES of embedding a
given biconnected multi-graph such that the largest face is as small as
possible and such that all faces have the same size, respectively.
We prove a complexity dichotomy for MINMAXFACE and show that deciding whether
the maximum is at most is polynomial-time solvable for and
NP-complete for . Further, we give a 6-approximation for minimizing
the maximum face in a planar embedding. For UNIFORMFACES, we show that the
problem is NP-complete for odd and even . Moreover, we
characterize the biconnected planar multi-graphs admitting 3- and 4-uniform
embeddings (in a -uniform embedding all faces have size ) and give an
efficient algorithm for testing the existence of a 6-uniform embedding.Comment: 23 pages, 5 figures, extended version of 'Planar Embeddings with
Small and Uniform Faces' (The 25th International Symposium on Algorithms and
Computation, 2014
Conceptualizations and Issues related to Learning Progressions, Learning Trajectories, and Levels of Sophistication
In this paper the nature of learning progressions and related concepts are discussed. The notions of learning progressions and learning trajectories are conceptualized and their usage is illustrated with the help of examples. In particular the nuances of instructional interventions utilizing these concepts are also discussed with implications for the teaching and learning of mathematics
The Partial Visibility Representation Extension Problem
For a graph , a function is called a \emph{bar visibility
representation} of when for each vertex , is a
horizontal line segment (\emph{bar}) and iff there is an
unobstructed, vertical, -wide line of sight between and
. Graphs admitting such representations are well understood (via
simple characterizations) and recognizable in linear time. For a directed graph
, a bar visibility representation of , additionally, puts the bar
strictly below the bar for each directed edge of
. We study a generalization of the recognition problem where a function
defined on a subset of is given and the question is whether
there is a bar visibility representation of with for every . We show that for undirected graphs this problem
together with closely related problems are \NP-complete, but for certain cases
involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Monotone Grid Drawings of Planar Graphs
A monotone drawing of a planar graph is a planar straight-line drawing of
where a monotone path exists between every pair of vertices of in some
direction. Recently monotone drawings of planar graphs have been proposed as a
new standard for visualizing graphs. A monotone drawing of a planar graph is a
monotone grid drawing if every vertex in the drawing is drawn on a grid point.
In this paper we study monotone grid drawings of planar graphs in a variable
embedding setting. We show that every connected planar graph of vertices
has a monotone grid drawing on a grid of size , and such a
drawing can be found in O(n) time
Knuthian Drawings of Series-Parallel Flowcharts
Inspired by a classic paper by Knuth, we revisit the problem of drawing
flowcharts of loop-free algorithms, that is, degree-three series-parallel
digraphs. Our drawing algorithms show that it is possible to produce Knuthian
drawings of degree-three series-parallel digraphs with good aspect ratios and
small numbers of edge bends.Comment: Full versio
A Measure of Variability for the Customer Satisfaction Index
EnIn this paper we deal with the problem of identifying heterogeneity indices for the purpose of improving the analysis of customer satisfaction observing the phenomenon through a new perspective. Our work introduces some indices that may be used for measuring heterogeneity in Customer Satisfaction framework and an application on real data is illustrated
Simultaneous Orthogonal Planarity
We introduce and study the problem: Given planar
graphs each with maximum degree 4 and the same vertex set, do they admit an
OrthoSEFE, that is, is there an assignment of the vertices to grid points and
of the edges to paths on the grid such that the same edges in distinct graphs
are assigned the same path and such that the assignment induces a planar
orthogonal drawing of each of the graphs?
We show that the problem is NP-complete for even if the shared
graph is a Hamiltonian cycle and has sunflower intersection and for
even if the shared graph consists of a cycle and of isolated vertices. Whereas
the problem is polynomial-time solvable for when the union graph has
maximum degree five and the shared graph is biconnected. Further, when the
shared graph is biconnected and has sunflower intersection, we show that every
positive instance has an OrthoSEFE with at most three bends per edge.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Hierarchical Partial Planarity
In this paper we consider graphs whose edges are associated with a degree of
{\em importance}, which may depend on the type of connections they represent or
on how recently they appeared in the scene, in a streaming setting. The goal is
to construct layouts of these graphs in which the readability of an edge is
proportional to its importance, that is, more important edges have fewer
crossings. We formalize this problem and study the case in which there exist
three different degrees of importance. We give a polynomial-time testing
algorithm when the graph induced by the two most important sets of edges is
biconnected. We also discuss interesting relationships with other
constrained-planarity problems.Comment: Conference version appeared in WG201
- …