7 research outputs found

    European society of intensive care medicine study of therapeutic hypothermia (32-35 °C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial).

    Get PDF
    BACKGROUND: Traumatic brain injury is a major cause of death and severe disability worldwide with 1,000,000 hospital admissions per annum throughout the European Union.Therapeutic hypothermia to reduce intracranial hypertension may improve patient outcome but key issues are length of hypothermia treatment and speed of re-warming. A recent meta-analysis showed improved outcome when hypothermia was continued for between 48 hours and 5 days and patients were re-warmed slowly (1 °C/4 hours). Previous experience with cooling also appears to be important if complications, which may outweigh the benefits of hypothermia, are to be avoided. METHODS/DESIGN: This is a pragmatic, multi-centre randomised controlled trial examining the effects of hypothermia 32-35 °C, titrated to reduce intracranial pressure 20 mmHg in accordance with the Brain Trauma Foundation Guidelines, 2007. DISCUSSION: The Eurotherm3235Trial is the most important clinical trial in critical care ever conceived by European intensive care medicine, because it was launched and funded by the European Society of Intensive Care Medicine and will be the largest non-commercial randomised controlled trial due to the substantial number of centres required to deliver the target number of patients. It represents a new and fundamental step for intensive care medicine in Europe. Recruitment will continue until January 2013 and interested clinicians from intensive care units worldwide can still join this important collaboration by contacting the Trial Coordinating Team via the trial website http://www.eurotherm3235trial.eu. TRIAL REGISTRATION: Current Controlled Trials ISRCTN34555414

    Study of therapeutic hypothermia (32 to 35°C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial):outcome of the pilot phase of the trial

    Get PDF
    BACKGROUND: Clinical trials in traumatic brain injury (TBI) are challenging. Previous trials of complex interventions were conducted in high-income countries, reported long lead times for site setup and low screened-to-recruitment rates. In this report we evaluate the internal pilot phase of an international, multicentre TBI trial of a complex intervention to assess: design and implementation of an online case report form; feasibility of recruitment (sites and patients); feasibility and effectiveness of delivery of the protocol. METHODS: All aspects of the pilot phase of the trial were conducted as for the main trial. The pilot phase had oversight by independent Steering and Data Monitoring committees. RESULTS: Forty sites across 12 countries gained ethical approval. Thirty seven of 40 sites were initiated for recruitment. Of these, 29 had screened patients and 21 randomized at least one patient. Lead times to ethics approval (6.8 weeks), hospital approval (18 weeks), interest to set up (61 weeks), set up to screening (11 weeks), and set up to randomization (31.6 weeks) are comparable with other international trials. Sixteen per cent of screened patients were eligible. We found 88% compliance rate with trial protocol. CONCLUSION: The pilot data demonstrated good feasibility for this large international multicentre randomized controlled trial of hypothermia to control intracranial pressure. The sample size was reduced to 600 patients because of homogeneity of the patient group and we showed an optimized cooling intervention could be delivered. TRIAL REGISTRATION: Current Controlled Trials: ISRCTN34555414

    Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients

    Get PDF
    Background: Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2–3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. Methods/design: 2 × 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrolment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. Discussion: To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. Trial registration: This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826Not peer reviewedPublisher PD

    Hypothermia for Intracranial Hypertension after Traumatic Brain Injury

    Get PDF
    In patients with traumatic brain injury, hypothermia can reduce intracranial hypertension. The benefit of hypothermia on functional outcome is unclear. We randomly assigned adults with an intracranial pressure of more than 20 mm Hg despite stage 1 treatments (including mechanical ventilation and sedation management) to standard care (control group) or hypothermia (32 to 35°C) plus standard care. In the control group, stage 2 treatments (e.g., osmotherapy) were added as needed to control intracranial pressure. In the hypothermia group, stage 2 treatments were added only if hypothermia failed to control intracranial pressure. In both groups, stage 3 treatments (barbiturates and decompressive craniectomy) were used if all stage 2 treatments failed to control intracranial pressure. The primary outcome was the score on the Extended Glasgow Outcome Scale (GOS-E; range, 1 to 8, with lower scores indicating a worse functional outcome) at 6 months. The treatment effect was estimated with ordinal logistic regression adjusted for prespecified prognostic factors and expressed as a common odds ratio (with an odds ratio <1.0 favoring hypothermia). We enrolled 387 patients at 47 centers in 18 countries from November 2009 through October 2014, at which time recruitment was suspended owing to safety concerns. Stage 3 treatments were required to control intracranial pressure in 54% of the patients in the control group and in 44% of the patients in the hypothermia group. The adjusted common odds ratio for the GOS-E score was 1.53 (95% confidence interval, 1.02 to 2.30; P=0.04), indicating a worse outcome in the hypothermia group than in the control group. A favorable outcome (GOS-E score of 5 to 8, indicating moderate disability or good recovery) occurred in 26% of the patients in the hypothermia group and in 37% of the patients in the control group (P=0.03). In patients with an intracranial pressure of more than 20 mm Hg after traumatic brain injury, therapeutic hypothermia plus standard care to reduce intracranial pressure did not result in outcomes better than those with standard care alone. (Funded by the National Institute for Health Research Health Technology Assessment program; Current Controlled Trials number, ISRCTN34555414.)
    corecore