960 research outputs found

    Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different

    Get PDF
    The worldwide obesity epidemic continues unabated, adversely impacting upon global health and economies. People with severe obesity suffer the greatest adverse health consequences with reduced life expectancy. Currently, bariatric surgery is the most effective treatment for people with severe obesity, resulting in marked sustained weight loss, improved obesity-associated comorbidities and reduced mortality. Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), the most common bariatric procedures undertaken globally, engender weight loss and metabolic improvements by mechanisms other than restriction and malabsorption. It is now clear that a plethora of gastrointestinal (GI) tract-derived signals plays a critical role in energy and glucose regulation. SG and RYGB, which alter GI anatomy and nutrient flow, impact upon these GI signals ultimately leading to weight loss and metabolic improvements. However, whilst highly effective overall, at individual level, post-operative outcomes are highly variable, with a proportion of patients experiencing poor long-term weight loss outcome and gaining little health benefit. RYGB and SG are markedly different anatomically and thus differentially impact upon GI signalling and bodyweight regulation. Here, we review the mechanisms proposed to cause weight loss following RYGB and SG. We highlight similarities and differences between these two procedures with a focus on gut hormones, bile acids and gut microbiota. A greater understanding of these procedure-related mechanisms will allow surgical procedure choice to be tailored to the individual to maximise post-surgery health outcomes and will facilitate the discovery of non-surgical treatments for people with obesity

    Current dietetic practices of obesity management in Saudi Arabia and comparison with Australian practices and best practice criteria

    Get PDF
    Objective: To describe the dietetic practices of the treatment of obesity in Saudi Arabia and compare this with best practice criteria and the practice in Australia. Methods: Anonymous questionnaires were completed by dietitians in Saudi Arabia. The topics included barriers to obesity management, demand and level of service and strategies and approaches used for weight management. Best practice scores were based on those used to assess Australian dietitians. Results: 253 dietitians participated in the survey. Of these, 175 (69 %) were involved in the management of obesity. The best practice score for Australian dietitians was slightly but significantly greater than the scores of Saudi dietitians (mean 41.6 vs 38.8; p \u3c0.001), (median 43 vs 39). There was also a significant correlation between the best practice score and years of experience (r = 0.26, p \u3c0.001). The most common assessment approaches were assessment of BMI (87%) and exercise habits (81%) while the most common strategies for obesity management were; dietary total fat reduction (92%) and increase incidental daily activity (92%). The major barrier for establishment of a weight management clinic reported by 49% of participants was inadequate resources. Conclusion: Saudi Arabian dietetic practice for the management of obesity does incorporate most best practice recommendations, but some specific elements are rarely used

    Practical utility and reliability of whole-room calorimetry in young children

    Get PDF
    The use of whole-room calorimetry (WRC) in young children can increase our understanding of children's energy balance. However, studies using WRC in young children are rare due to concerns about its feasibility. To assess the feasibility of WRC in young children, forty children, aged 4-6 years, were asked to follow a graded activity protocol while in a WRC. In addition, six children participated in two additional resting protocols to examine the effect of diet-induced thermogenesis on resting energy expenditure (REE) measures and the reliability of REE measurement. Refusals to participate and data loss were quantified as measures of practical utility, and REE measured after an overnight fast and after a 90-min fast were compared. In addition, both were compared to predicted BMR values using the Schofield equation. Our results showed that thirty (78·9 %) participants had acceptable data for all intensities of the activity protocol. The REE values measured after a 90-min fast (5·07 (sd 1·04) MJ/d) and an overnight fast (4·73 (sd 0·61) MJ/d) were not significantly different from each other (P = 0·472). However, both REE after an overnight fast and a 90-min fast were significantly higher than predicted BMR (3·96 (sd 0·18) MJ/d) using the Schofield equation (P = 0·024 and 0·042, respectively). We conclude that, with a developmentally sensitive approach, WRC is feasible and can be standardised adequately even in 4- to 6-year-old children. In addition, the effect of a small standardised breakfast, approximately 90 min before REE measurements, is likely to be small

    Predictive validity and classification accuracy of actigraph energy expenditure equations and cut-points in young children

    Get PDF
    Objectives: Evaluate the predictive validity of ActiGraph energy expenditure equations and the classification accuracy of physical activity intensity cut-points in preschoolers. Methods: Forty children aged 4–6 years (5.3±1.0 years) completed a ~150-min room calorimeter protocol involving age-appropriate sedentary, light and moderate-to vigorous-intensity physical activities. Children wore an ActiGraph GT3X on the right mid-axillary line of the hip. Energy expenditure measured by room calorimetry and physical activity intensity classified using direct observation were the criterion methods. Energy expenditure was predicted using Pate and Puyau equations. Physical activity intensity was classified using Evenson, Sirard, Van Cauwenberghe, Pate, Puyau, and Reilly, ActiGraph cut-points. Results: The Pate equation significantly overestimated VO2 during sedentary behaviors, light physical activities and total VO2 (P<0.001). No difference was found between measured and predicted VO2 during moderate-to vigorous-intensity physical activities (P = 0.072). The Puyau equation significantly underestimated activity energy expenditure during moderate-to vigorous-intensity physical activities, light-intensity physical activities and total activity energy expenditure (P<0.0125). However, no overestimation of activity energy expenditure during sedentary behavior was found. The Evenson cut-point demonstrated significantly higher accuracy for classifying sedentary behaviors and light-intensity physical activities than others. Classification accuracy for moderate-to vigorous-intensity physical activities was significantly higher for Pate than others. Conclusion: Available ActiGraph equations do not provide accurate estimates of energy expenditure across physical activity intensities in preschoolers. Cut-points of ≤25counts⋅15 s−1 and ≥420 counts⋅15 s−1 for classifying sedentary behaviors and moderate-to vigorous-intensity physical activities, respectively, are recommended

    Spatiotemporal slope stability analytics for failure estimation (SSSAFE): linking radar data to the fundamental dynamics of granular failure

    Get PDF
    Impending catastrophic failure of granular earth slopes manifests distinct kinematic patterns in space and time. While risk assessments of slope failure hazards have routinely relied on the monitoring of ground motion, such precursory failure patterns remain poorly understood. A key challenge is the multiplicity of spatiotemporal scales and dynamical regimes. In particular, there exist a precursory failure regime where two mesoscale mechanisms coevolve, namely, the preferred transmission paths for force and damage. Despite extensive studies, a formulation which can address their coevolution not just in laboratory tests but also in large, uncontrolled field environments has proved elusive. Here we address this problem by developing a slope stability analytics framework which uses network flow theory and mesoscience to model this coevolution and predict emergent kinematic clusters solely from surface ground motion data. We test this framework on four data sets: one at the laboratory scale using individual grain displacement data; three at the field scale using line-of-sight displacement of a slope surface, from ground-based radar in two mines and from space-borne radar for the 2017 Xinmo landslide. The dynamics of the kinematic clusters deliver an early prediction of the geometry, location and time of failure
    corecore