32 research outputs found

    Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut

    Get PDF
    Fish larval development, not least the spectacular process of flatfish metamorphosis, appears to be under complex endocrine control, many aspects of which are still not fully elucidated. In order to obtain data on the functional development of two major endocrine glands, the pituitary and the thyroid, during flatfish metamorphosis, histology, immunohistochemistry and in situ hybridization techniques were applied on larvae of the Atlantic halibut (Hippoglossus hippoglossus), a large, marine flatfish species, from hatching through metamorphosis. The material was obtained from a commercial hatchery. Larval age is defined as day-degrees (D =accumulated daily temperature from hatching). Sporadic thyroid follicles are first detected in larvae at 142 D (27 days post-hatch), prior to the completion of yolk sack absorption. Both the number and activity of the follicles increase markedly after yolk sack absorption and continue to do so during subsequent development. The larval triiodothyronine (T3) and thyroxine (T4) content increases, subsequent to yolk absorption, and coincides with the proliferation of thyroid follicles. A second increase of both T3 and T4 occurs around the start of metamorphosis and the T3 content further increases at the metamorphic climax. Overall, the T3 content is lower than T4. The pituitary gland can first be distinguished as a separate organ at the yolk sack stage. During subsequent development, the gland becomes more elongated and differentiates into neurohypophysis (NH), pars distalis (PD) and pars intermedia (PI). The first sporadic endocrine pituitary cells are observed at the yolk sack stage, somatotrophs (growth hormone producing cells) and somatolactotrophs (somatolactin producing cells) are first observed at 121 D (23 days post-hatch), and lactotrophs (prolactin producing cells) at 134 D (25 days post-hatch). Scarce thyrotrophs are evident after detection of the first thyroid follicles (142 D ), but coincident with a phase in which follicle number and activity increase (260 D ). The somatotrophs are clustered in the medium ventral region of the PD, lactotrophs in the anterior part of the PD and somatolactotrophs are scattered in the mid and posterior region of the pituitary. At around 600 D , coinciding with the start of metamorphosis, somatolactotrophs are restricted to the interdigitating tissue of the NH. During larval development, the pituitary endocrine cells become more numerous. The present data on thyroid development support the notion that thyroid hormones may play a significant role in Atlantic halibut metamorphosis. The time of appearance and the subsequent proliferation of pituitary somatotrophs, lactotrophs, somatolactotrophs and thyrotrophs indicate at which stages of larval development and metamorphosis these endocrine cells may start to play active regulatory roles.This work has been carried out within the projects ‘‘Endocrine Control as a Determinant of Larval Quality in Fish Aquaculture’’ (CT-96-1422) and ‘‘Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis’’ (Q5RS-2002-01192), with financial support from the Commission of the European Communities. However, it does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. This project was further supported by the Swedish Council for Agricultural and Forestry Research and Pluriannual funding to CCMAR by the Portuguese Science and Technology Council

    Comparative distribution of substance P (SP) and cholecystokinin (CCK) binding-sites and immunoreactivity in the brain of the sea bass (Dicentrarchus labrax)

    No full text
    Specific binding sites for cholecystokinin (CCK) and substance P (SP) were detected in the brain of a marine teleost fish, the sea bass, after in vitro incubation of tissue sections with the tritiated peptides and light microscopic autoradiography. Specific binding sites for [H-3]-CCK were detected in the dorsal and ventral telencephalon, in the preoptic, tuberal and posterior hypothalamus, in the optic tectum, in the valvula cerebelli, in the vagal lobe and further in a dorsal location in the medulla oblongata. Areas rich in [H-3]-SP binding were located in the ventral telencephalon, in the entire hypothalamic and thalamic region, in the midbrain tegmentum, in the optic tectum, in the valvula cerebelli and in the medulla oblongata. The distribution of these binding sites seemed to match fairly well with the location of the corresponding immunoreactive elements, although some minor mismatches could be observed. These autoradiographic findings provide the first anatomical evidence for the presence of CCK-like and SP-like binding sites in the brain of a teleost fish.status: publishe

    Innervation and control of the adenohypophysis by hypothalamic peptidergic neurons in teleost fishes: EM immunohistochemical evidence

    No full text
    Previous light microscopic studies have revealed neuropeptide-immunoreactive neurosecretory fibers in the teleostean neurohypophysis, and ultrastructural work has reported direct innervation of endocrine cells by the terminals of fibers penetrating the adenohypophysis. This paper reviews our recent data from ultrastructural, immunohistochemical, receptor localization, and superfusion studies, which suggest a role for neuropeptides in the control of teleost pituitary secretion. We have used a combination of pre- and post-embedding electron microscopic immunolabeling methods to determine which neuropeptides are present in fibers innervating the pituitaries of three species: Poecilia latipinna, Dicentrarchus labrax, and Clarias gariepinus. Numerous axon profiles with immunoreactivity for the neurosecretory peptides vasotocin and isotocin formed large Herring bodies and terminal-like boutons in contact with corticotropic, growth hormone, thyrotropic, and pars intermedia cells. Numerous melanin-concentrating hormone-immunoreactive fibers and scarcer neurotensin and corticotropin-releasing factor-immunoreactive fibers showed similar distributions, terminating close to pars intermedia and corticotropic cells. Somatostatin, cholecystokinin, galanin, substance P neuropeptide Y, growth hormone-releasing factor, thyrotropin-releasing hormone, and gonadotropin-releasing hormone-immunoreactivities were found in small calibre fibers penetrating among growth hormone, thyrotropic, and gonadotropic cells. These morphological findings have been supplemented by autoradiographic studies, which showed the distribution of binding sites for vasotocin, isotocin, galanin, and neuropeptide Y ligands over specific groups of pituitary cells, and superfusion studies that showed growth hormone release was stimulated by growth hormone-releasing factor and thyrotropin-releasing hormone, but inhibited by somatostatin. The implications of these results for neuropeptidergic control of teleostean pituitary secretions are discussed. (C) 1999 Wiley-Liss, Inc.status: publishe

    Autoradiographic distribution of galanin binding-sites in the brain and pituitary of the sea bass (Dicentrarchus labrax)

    No full text
    Specific binding sites for galanin (GAL) were detected in brain and pituitary of a marine teleost fish, the sea bass, after in vitro incubation of tissue sections with [I-125]GAL and light microscopic autoradiography. Binding conditions were optimized and as a result the binding was saturable and specific. In the brain, [I-125]GAL binding was found to occur in all parts of the dorsal and ventral telencephalon, in the anterior, tuberal and posterior hypothalamus, in the thalamus and in the tectum opticum, in the inferior lobe and in the ventral medulla oblongata. In the pituitary dense [I-125]GAL binding was confined to the area occupied by the prolactin cells in the rostral part of the adenohypophysis. These findings provide the first anatomical evidence for the presence of GAL specific binding sites in the teleost brain and pituitary.status: publishe

    Autoradiographic localization of binding-sites for vasotocin in the brain and pituitary of the sea bass (Dicentrarchus labrax)

    No full text
    Specific binding sites for vasotocin (VT) were detected in brain and pituitary of a teleost fish, the sea bass, after in vitro incubation of tissue sections with [3H]arginine-vasopressin (AVP) and light microscopic autoradiography. Conditions for the binding assay were optimized and as a result the binding was saturable and specific. In the brain [3H]AVP binding was found to occur in the pars lateralis and the pars ventralis of the ventral telencephalon, in the pars centralis of the dorsal telencephalon, in the hypothalamic region (especially in the nucleus preopticus, in the tuberal hypothalamus and around the posterior recess), in the tectum opticum and in the noncellular layer of the corpus cerebelli. In the pituitary a high density of [3H]AVP binding was observed in the areas of the pars distalis (PD) occupied by ACTH-, TSH- and GH-cells and also in the pars intermedia (PI). The present study presents the first anatomical evidence for the presence of VT specific binding sites in teleost brain and pituitary.status: publishe

    Immunolocalization of catecholamine enzymes, serotonin, dopamine and L-dopa in the brain of Dicentrarchus labrax (Teleostei)

    No full text
    Antisera to serotonin (5-HT), dopamine, and L-dopa, and to the catecholamine synthesizing enzymes, tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and phenylethanolamine N-methyl transferase (PNMT), were used to localize monoamine containing neurones in the brain of Dicentrarchus labrax (sea bass). In the brain stem, 5-HT-immunoreactive (ir) neurones were recognized in the ventrolateral medulla, vagal motor area, medullary, and mesencephalic raphe nuclei and in the dorsolateral isthmal tegmentum. In the hypothalamus, liquor-contacting 5-HT neurones were seen in various regions of the paraventricular organ. Virtually all regions of the brain contained a dense innervation by 5-HT fibres and terminals. DBH-ir neurones were restricted to three brain stem areas: the locus coeruleus, the area postrema, and the reticular formation of the lower medulla. Neurones in these three groups also displayed TH-ir, and in the latter area, PNMT-ir in addition. In the locus coeruleus and area postrema, TH-ir neurones outnumbered DBH-ir neurones, an observation substantiated by the presence of dopamine-ir neurones. In the forebrain, dopamine- and TH-ir neurones were found in the olfactory bulb, ventral/central telencephalon, periventricular preoptic, and suprachiasmatic areas, dorsolateral and ventromedial thalamus, and posterior tuberal nucleus. In the paraventricular organ, the distribution and morphology of dopamine-ir neurones was similar to that observed with anti-5-HT, but the vast majority of cells were not TH-ir, suggesting accumulation of dopamine by uptake from the ventricle, rather than by synthesis. L-dopa-ir neurones were found only in the central telencephalon, preoptic recess, and dorsolateral thalamus. Fibres and terminals immunoreactive for dopamine, TH, and DBH showed a broadly similar distribution. The results are discussed in relation to the monoaminergic systems previously reported in other teleostean species and the mammalian brain.status: publishe

    Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia

    No full text
    Dysfunction of glutamate transporters has been proposed to promote neuronal death in modelled cerebral ischemia. However, these studies have produced conflicting results and the changes in glutamate transporter expression have not yet been examined in a mouse focal ischemic stroke model. This study used quantitative real-time reverse-transcription polymerase chain reaction to examine glutamate transporter mRNA expression in the hippocampus, cortex and striatum in a mouse model of focal ischemic stroke induced by middle cerebral artery occlusion (MCAO). Effects on mRNA expression of glial (GLT-1, GLAST) and neuronal (EAAC1) glutamate transporters in these brain areas were assessed by comparing MCAO brains with sham-operated control brains. Changes in transporter proteins were also assessed by immunohistochemistry using specific antibodies to GLT-1 and GLAST. Following focal ischemia, GLT-1 mRNA expression was decreased significantly in the ipsilateral hippocampus and cortex compared to the sham-operated brains (p<0.05). There were no significant differences in GLAST or EAAC1 mRNA expression between MCAO and sham-operated brains. Immunohistochemistry also confirmed a marked reduction in GLT-1 immunoreactivity in the cortex and hippocampus. Down regulation of GLT-1 in these brain areas may impair normal clearance of synaptically-released glutamate and contribute to neural damage following focal ischemic insult

    Thyrotropin-releasing hormone-immunoreactive system in the brain and pituitary-gland of the sea bass (Dicentrarchus labrax, Teleostei)

    No full text
    The immunohistochemical distribution of thyrotropin-releasing hormone-like immunoreactivity (TRH-ir) in the brain and pituitary of the sea bass (Dicentrarchus labrax) was examined on cryostat sections of tissues perfuse fixed in a formaldehyde-glutaraldehyde mixture. TRH-ir fibres were found in many areas of the brain: dorsal and ventral telencephalon, preoptic and tuberal hypothalamus, thalamus, midbrain tegmentum, optic tectum, and medulla oblongata. In the hypothalamus the densest area of innervation was the nucleus anterioris tuberis and medial nucleus recessus lateralis, where small TRH-ir cell bodies were also found. In the pituitary gland, TRH-ir fibres were numerous in the posterior neurohypophysis, and these appeared to form varicosities between groups of melanocorticotropic cells of the pars intermedia. No clear relationship was seen between TRH-ir fibres and the thyrotropic cells, or any other cell type of the pars distalis. In the brain stem a notable feature was the prominent innervation of groups of motoneurons by beaded TRH-ir fibres. These observations suggest that in teleost fishes the role of TRH may be related to pars intermedia function, rather than the thyrotropin- or prolactin-releasing function established in tetrapods. In addition the tripeptide may act as a central neurotransmitter involved in sensory and autonomic motor integration.status: publishe

    Peptidergic innervation of the andrenocorticotropic hormone (ACTH)- and growth-hormone (GH)-producing cells in the pars-distalis of the sea bass (Dicentrachus Labrax)

    No full text
    Due to its unique organization, the teleost pituitary is an ideal model in which to investigate the relationship of the nervous system with the pituitary endocrine cells. A light microscope immunocytochemical study of the sea bass pituitary revealed six different neuropeptides in nerve fibers which projected into the pituitary neurohypophysis and bordered the adenohypophysial cells. Double staining showed separate nerve fibers immunoreactive for corticotropin-releasing factor (CRF), vasotocin (VT), somatostatin (SRIF), growth hormone-releasing factor (GRF), and neurotensin (NT) in the vicinity of the adrenocorticotropic hormone-releasing cells (ACTH-cells) in the rostral pars distalis (PD). In the proximal PD cholecystokinin (CCK)-, SRIF-, GRF-, and VT-immunoreactive fibers penetrated between the growth hormone-releasing cells (GH-cells). These results suggest a possible role for CCK, GRF, SRIF, and VT in the modulation of GH-cell activity, while the synthesis and/or secretion of the ACTH-cells might be affected by the release of VT, CRF, SRIF, GRF, and NT.status: publishe
    corecore