148 research outputs found

    Spatial Distribution of Pleistocene and Holocene Faunal Remains, South Block Excavations

    Get PDF
    The fossil remains of mammoth and other Pleistocene fauna found along and near the escarpment of the west shore of Lima Reservoir in Centennial Valley have been the subject of field investigations since the 1980s. Summaries or earlier studies conducted at the locality are presented in various published and unpublished sources including Albanese, Davis, and Hill (1995), Bump (1995), Davis and Batten (1996), Dundas (1989, 1990, 1996), Hill and Albanese (1996), and Hill, Davis, and Albanese (1995)

    ElecSim: Monte-Carlo Open-Source Agent-Based Model to Inform Policy for Long-Term Electricity Planning

    Full text link
    Due to the threat of climate change, a transition from a fossil-fuel based system to one based on zero-carbon is required. However, this is not as simple as instantaneously closing down all fossil fuel energy generation and replacing them with renewable sources -- careful decisions need to be taken to ensure rapid but stable progress. To aid decision makers, we present a new tool, ElecSim, which is an open-sourced agent-based modelling framework used to examine the effect of policy on long-term investment decisions in electricity generation. ElecSim allows non-experts to rapidly prototype new ideas. Different techniques to model long-term electricity decisions are reviewed and used to motivate why agent-based models will become an important strategic tool for policy. We motivate why an open-source toolkit is required for long-term electricity planning. Actual electricity prices are compared with our model and we demonstrate that the use of a Monte-Carlo simulation in the system improves performance by 52.5%52.5\%. Further, using ElecSim we demonstrate the effect of a carbon tax to encourage a low-carbon electricity supply. We show how a {\pounds}40 ($50\$50) per tonne of CO2 emitted would lead to 70% renewable electricity by 2050.Comment: e-Energy '19 Proceedings of the Tenth ACM International Conference on Future Energy System

    Measurements of charmed-meson production in interactions between 350 GeV/c π\pi^- particles and nuclei

    Get PDF
    Charmed-meson production by 350350~GeV/cc {π\pi^-} particles incident on copper and tungsten targets has been studied in the WA9292 experiment, performed at the CERN Ω\Omega^\prime spectrometer. Results obtained are reported and discussed. Reconstruction of decays from the set D0Kπ+{\rm D}^0 \rightarrow {\rm K}^- \pi^+, D0Kππ+π+{\rm D}^0 \rightarrow {\rm K}^- \pi^- \pi^+ \pi^+, D+Kπ+π+{\rm D}^+ \rightarrow {\rm K}^- \pi^+ \pi^+, Ds+ϕπ+{{\rm D}_{\rm s}}^+ \rightarrow \phi \pi^+ and charge conjugates has yielded a sample of 7280±1087280 \pm 108 charmed mesons, produced with \xf > 0, \langle \xf \rangle = 0.18 and \langle {\pt}^2 \rangle = 1.86~{\rm (GeV/}c{\rm )}^2. Assuming a relationship σ=σ0Aα\sigma = \sigma_0 A^\alpha between the cross-section, σ\sigma, per nucleus of mass AA and the nucleonic cross-section, σ0\sigma_0, the α\alpha value found for the detected charmed particles is 0.95±0.06±0.030.95 \pm 0.06 \pm 0.03. Taking α=1\alpha = 1, the measured cross-sections per nucleon for \xf > 0 production are 7.78±0.14±0.527.78 \pm 0.14 \pm 0.52~μ\mubarn for D0{\rm D}^0/Dˉ0\bar{\rm D}^0, 3.28±0.08±0.293.28 \pm 0.08 \pm 0.29~μ\mubarn for D+{\rm D}^+/D{\rm D}^- and 1.29±0.16±0.331.29 \pm 0.16 \pm 0.33~μ\mubarn for Ds+{{\rm D}_{\rm s}}^+/Ds{{\rm D}_{\rm s}}^-. Differential cross-sections with respect to \xf and {\pt}^2 have been determined for the various types of charmed meson, and particle-antiparticle asymmetries have been analysed

    Measurement of the beauty production cross-section in 350 GeV/c π\pi^- -Cu interactions

    Get PDF
    Using a sample of 10810^8 triggered events, produced in π\pi^---\,Cu interactions at 350~GeV/c/c, we have identified 26 beauty events. The estimated background in this sample is 0.6±0.60.6 \pm 0.6 events. From these data, assuming a linear A-dependence, we measure a beauty production cross-section integrated over all xFx_F of 5.7+1.31.1 (stat.)+0.60.5 (syst.) 5.7 {+1.3 \atop -1.1}~{\mathrm {(stat.)}} {+0.6 \atop -0.5}~{\mathrm {(syst.)}}~nb/N

    RT-PCR assays for seven serotypes of epizootic haemorrhagic disease virus & their use to type strains from the Mediterranean region and North America

    Get PDF
    Epizootic haemorrhagic disease virus (EHDV) infects wild ruminants, causing a frequently fatal haemorrhagic disease. However, it can also cause bluetongue-like disease in cattle, involving significant levels of morbidity and mortality, highlighting a need for more rapid and reliable diagnostic assays. EHDV outer-capsid protein VP2 (encoded by genome-segment 2 [Seg-2]) is highly variable and represents the primary target for neutralising antibodies generated by the mammalian host. Consequently VP2 is also the primary determinant of virus “serotype”, as identified in virus neutralisation tests (VNT). Although previous reports have indicated eight to ten EHDV serotypes, recent serological comparisons and molecular analyses of Seg-2 indicate only seven EHDV “types”. Oligonucleotide primers were developed targeting Seg-2, for use in conventional RT-PCR assays to detect and identify these seven types. These assays, which are more rapid and sensitive, still show complete agreement with VNT and were used to identify recent EHDV isolates from the Mediterranean region and North America

    WA92: a fixed target experiment to trigger on and identify beauty particle decays

    Get PDF
    We describe the detectors and trigger system used in the CERN WA92 experiment. The experiment was designed to study the production and decay of beauty particles from 350 GeV/cc\, π\,\pi^- interactions in copper and tungsten targets. Charged particle tracking is performed using the Omega spectrometer. Silicon microstrip detectors are used to provide precise tracking information in the region of the production and the decay of heavy-flavoured particles and to trigger on the resulting high impact parameter tracks. The precision of vertex reconstruction corresponds to ±3.7%\pm 3.7\% of the mean B-decay proper lifetime. Lepton and high transverse momentum hadron signals are also used in the trigger, which accepts 29\% of B-decays and rejects 98\% of non-beauty interactions

    Long-Term Programming of Antigen-Specific Immunity from Gene Expression Signatures in the PBMC of Rhesus Macaques Immunized with an SIV DNA Vaccine

    Get PDF
    While HIV-1-specific cellular immunity is thought to be critical for the suppression of viral replication, the correlates of protection have not yet been determined. Rhesus macaques (RM) are an important animal model for the study and development of vaccines against HIV/AIDS. Our laboratory has helped to develop and study DNA-based vaccines in which recent technological advances, including genetic optimization and in vivo electroporation (EP), have helped to dramatically boost their immunogenicity. In this study, RMs were immunized with a DNA vaccine including individual plasmids encoding SIV gag, env, and pol alone, or in combination with a molecular adjuvant, plasmid DNA expressing the chemokine ligand 5 (RANTES), followed by EP. Along with standard immunological assays, flow-based activation analysis without ex vivo restimulation and high-throughput gene expression analysis was performed. Strong cellular immunity was induced by vaccination which was supported by all assays including PBMC microarray analysis that identified the up-regulation of 563 gene sequences including those involved in interferon signaling. Furthermore, 699 gene sequences were differentially regulated in these groups at peak viremia following SIVmac251 challenge. We observed that the RANTES-adjuvanted animals were significantly better at suppressing viral replication during chronic infection and exhibited a distinct pattern of gene expression which included immune cell-trafficking and cell cycle genes. Furthermore, a greater percentage of vaccine-induced central memory CD8+ T-cells capable of an activated phenotype were detected in these animals as measured by activation analysis. Thus, co-immunization with the RANTES molecular adjuvant followed by EP led to the generation of cellular immunity that was transcriptionally distinct and had a greater protective efficacy than its DNA alone counterpart. Furthermore, activation analysis and high-throughput gene expression data may provide better insight into mechanisms of viral control than may be observed using standard immunological assays

    ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6

    Get PDF
    Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function
    corecore