8,053 research outputs found

    Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions

    Full text link
    Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons to enable measurements of its suppressed decays. Results of a detailed study of the determination of the muon Yukawa coupling at 3 TeV, based on full detector simulation and event reconstruction, are presented. The muon Yukawa coupling can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab. The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy

    Electron Power-Law Spectra in Solar and Space Plasmas

    Full text link
    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated electrons often exhibit a power law, it remains unclear how electrons are accelerated to high energies and what processes determine the power-law index ÎŽ\delta. Here, we review previous observations of the power-law index ÎŽ\delta in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the `above-the-looptop' solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (ή≳\delta \gtrsim 4). This is in contrast to the typically hard spectra (ÎŽâ‰Č\delta \lesssim 4) that are observed in coincidence with shocks. The difference implies that shocks are more efficient in producing a larger non-thermal fraction of electron energies when compared to magnetic reconnection. A caveat is that during active times in Earth's magnetotail, ÎŽ\delta values seem spatially uniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.Comment: 67 pages, 15 figures; submitted to Space Science Reviews; comments welcom

    Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same

    Get PDF
    Provides new compositions containing nearly monodisperse colloidal core/shell semiconductor nanocrystals with high photoluminescence quantum yields (PL QY), as well as other complex structured semiconductor nanocrystals. This invention also provides new synthetic methods for preparing these nanocrystals, and new devices comprising these compositions. In addition to core/shell semiconductor nanocrystals, this patent also provides complex semiconductor nanostructures, quantum shells, quantum wells, doped nanocrystals, and other multiple-shelled semiconductor nanocrystals

    The early days of the Sculptor dwarf spheroidal galaxy

    Get PDF
    We present the high resolution spectroscopic study of five -3.9<=[Fe/H]<=-2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed analysis of the chemical abundances of alpha, iron peak, light and heavy elements, and draw comparisons with the Milky Way halo and the ultra faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follows the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the TypeII supernovae. In addition to its value to help refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggestive of a fair proportion of s-process; we discuss the implication for the nucleosynthetic origin of the neutron capture elements.Comment: Replacement after language editio

    Renormalization of the Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

    Get PDF
    We have investigated the present renormalization prescriptions of Cabibbo-Kobayashi-Maskawa (CKM) matrix. When considering the prescription which is formulated with reference to the case of zero mixing we find it doesn't satisfy the unitary condition of the bare CKM matrix. After added a delicate patch this problem can be solved at one-loop level. In this paper We generalize this prescription to all loop levels and keep the unitarity of the bare CKM matrix, simultaneously make the amplitude of an arbitrary physical process involving quark mixing convergent and gauge independent. We also find that in order to keep the CKM counterterms gauge independent the unitarity of the bare CKM matrix must be preserved.Comment: has been revised, 8 pages, 1 figur

    Polypyrrole and polyaniline nanocomposites with high photothermal conversion efficiency

    Get PDF
    The simple and scalable synthesis of poly[2-(methacryloyloxy)ethyl phosphorylcholine] (PMPC)-coated conducting polymer (CP) nanocomposites is described. These functional nanocomposites exhibit tunable absorption in the near-infrared region with relatively high photothermal efficiencies. More importantly, their potential for bio-imaging and therapeutic treatment is proven by cellular uptake and cytotoxicity studies

    Designing peptide nanoparticles for efficient brain delivery

    Get PDF
    The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood–brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain, from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain
    • 

    corecore