72 research outputs found

    Inhibition of LtxA Toxicity by Blocking Cholesterol Binding With Peptides

    Get PDF
    The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1 (LFA-1), a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of 334LEEYSKR340, in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC336 motif of LtxA (CRAC336WT). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of RTX-producing organisms

    Aggregatibacter Actinomycetemcomitans Leukotoxin Causes Activation of Lymphocyte Function-Associated Antigen 1

    Get PDF
    Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin α L /β 2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic α L domain and a yellow fluorescent protein-tagged β 2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both α L and β 2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the α L and β 2 subunits (K d = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin α M , α X , and β 3 subunits (K d = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of α L and β 2 show that LtxA binds membrane-proximal domain of α L and intermediate domain of β 2 . © 2018 John Wiley & Sons Lt

    Membrane Association and Destabilization by Aggregatibacter Actinomycetemcomitans Leukotoxin Requires Changes in Secondary Structures

    Get PDF
    Aggregatibacter actinomycetemcomitans is a common inhabitant of the upper aerodigestive tract of humans and non-human primates and is associated with disseminated infections, including lung and brain abscesses, pediatric infective endocarditis in children, and localized aggressive periodontitis. A. actinomycetemcomitans secretes a repeats-in-toxin protein, leukotoxin, which exclusively kills lymphocyte function-associated antigen-1-bearing cells. The toxin\u27s pathological mechanism is not fully understood; however, experimental evidence indicates that it involves the association with and subsequent destabilization of the target cell\u27s plasma membrane. We have long hypothesized that leukotoxin secondary structure is strongly correlated with membrane association and/or destabilization. In this study, we tested this hypothesis by analyzing lipid-induced changes in leukotoxin conformation. Upon incubation of leukotoxin with lipids that favor leukotoxin-membrane association, we observed an increase in leukotoxin α-helical content that was not observed with lipids that favor membrane destabilization. The change in leukotoxin conformation after incubation with these lipids suggests that membrane binding and membrane destabilization have distinct secondary structural requirements, suggesting that they are independent events. These studies thus provide insight into the mechanism of cell damage that leads to disease progression by A. actinomycetemcomitans

    Aggregatibacter Actinomycetemcomitans Leukotoxin Cytotoxicity Occurs Through Bilayer Destabilization

    Get PDF
    The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, is a common inhabitant of the human upper aerodigestive tract. The organism produces an RTX (Repeats in ToXin) toxin (LtxA) that kills human white blood cells. LtxA is believed to be a membrane-damaging toxin, but details of the cell surface interaction for this and several other RTX toxins have yet to be elucidated. Initial morphological studies suggested that LtxA was bending the target cell membrane. Because the ability of a membrane to bend is a function of its lipid composition, we assessed the proficiency of LtxA to release of a fluorescent dye from a panel of liposomes composed of various lipids. Liposomes composed of lipids that form nonlamellar phases were susceptible to LtxA-induced damage while liposomes composed of lipids that do not form non-bilayer structures were not. Differential scanning calorimetry demonstrated that the toxin decreased the temperature at which the lipid transitions from a bilayer to a nonlamellar phase, while 31P nuclear magnetic resonance studies showed that the LtxA-induced transition from a bilayer to an inverted hexagonal phase occurs through the formation of an isotropic intermediate phase. These results indicate that LtxA cytotoxicity occurs through a process of membrane destabilization

    Aggregatibacter Actinomycetemcomitans Leukotoxin Utilizes a Cholesterol Recognition/Amino Acid Consensus Site for Membrane Association

    Get PDF
    Background: A repeats-in-toxin (RTX) leukotoxin and its integrin receptor aggregate in cholesterol-rich lipid rafts. Results: The affinity of the toxin to cholesterol is driven by a cholesterol recognition/amino acid consensus (CRAC) motif. Conclusion: Leukotoxin cytotoxicity is regulated by the CRAC motif. Significance: Other RTX toxins contain this CRAC motif, suggesting a role for cholesterol recognition in RTX cytolysis. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc

    Membrane Localization of the Repeats-in-Toxin (RTX) Leukotoxin (LtxA) Produced by Aggregatibacter Actinomycetemcomitans

    Get PDF
    The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane. © 2018 Brown et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Aggregatibacter Actinomycetemcomitans Leukotoxin Cytotoxicity Occurs Through Bilayer Destabilization

    Get PDF
    The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, is a common inhabitant of the human upper aerodigestive tract. The organism produces an RTX (Repeats in ToXin) toxin (LtxA) that kills human white blood cells. LtxA is believed to be a membrane-damaging toxin, but details of the cell surface interaction for this and several other RTX toxins have yet to be elucidated. Initial morphological studies suggested that LtxA was bending the target cell membrane. Because the ability of a membrane to bend is a function of its lipid composition, we assessed the proficiency of LtxA to release of a fluorescent dye from a panel of liposomes composed of various lipids. Liposomes composed of lipids that form nonlamellar phases were susceptible to LtxA-induced damage while liposomes composed of lipids that do not form non-bilayer structures were not. Differential scanning calorimetry demonstrated that the toxin decreased the temperature at which the lipid transitions from a bilayer to a nonlamellar phase, while 31P nuclear magnetic resonance studies showed that the LtxA-induced transition from a bilayer to an inverted hexagonal phase occurs through the formation of an isotropic intermediate phase. These results indicate that LtxA cytotoxicity occurs through a process of membrane destabilization. © 2012 Blackwell Publishing Ltd

    Historical separation and present-day structure of common dolphinfish (Coryphaena hippurus) populations in the Atlantic Ocean and Mediterranean Sea

    Get PDF
    The common dolphinfish (Coryphaena hippurus) is an epipelagic, mid-trophic level, highly migratory species distributed throughout the world’s tropical and subtropical oceans in waters greater than 20C. Life-history variables, migratory behaviour, and genetic markers have been used to define major stocks in the central Atlantic Ocean and Mediterranean Sea. Here, we used the mitochondrial DNA gene NADH subunit 1 (688 bp) to test for differences between population groups. A total of 103 haplotypes were detected among 203 fish. Gene diversities in samples were large and similar among populations (mean h ¼ 0.932; range 0.894–0.987), but nucleotide diversities varied widely among samples (range p ¼ 0.004–0.034) and appear to reflect population histories. Principal component analysis revealed two large populations groups, and the analysis of molecular variation and pairwise values of UST resolved population structure within these groups. Populations in the eastern Atlantic and Mediterranean showed the largest amounts of divergence from one another (UCT ¼ 0.331). Adult movement and biophysical barriers to larval dispersal may explain contemporary differences between stocks, but the divergent populations in the Mediterranean Sea are likely due to isolations by cold temperature barriers during Pleistocene glaciations. The geographically large stock groupings require international cooperation in the harvest management and conservation of local dolphinfish populations

    The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds

    Get PDF
    In this paper we discuss the latest developments of the STRIP instrument of the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the "B-modes" of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the "Observatorio del Teide" in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes + Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin (TX
    corecore