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Summary

The Gram-negative bacterium, Aggregatibacter
actinomycetemcomitans, is a common inhabitant
of the human upper aerodigestive tract. The
organism produces an RTX (Repeats in ToXin)
toxin (LtxA) that kills human white blood cells.
LtxA is believed to be a membrane-damaging
toxin, but details of the cell surface interaction for
this and several other RTX toxins have yet to be
elucidated. Initial morphological studies sug-
gested that LtxA was bending the target cell mem-
brane. Because the ability of a membrane to bend
is a function of its lipid composition, we assessed
the proficiency of LtxA to release of a fluorescent
dye from a panel of liposomes composed of
various lipids. Liposomes composed of lipids that
form nonlamellar phases were susceptible to
LtxA-induced damage while liposomes composed
of lipids that do not form non-bilayer structures
were not. Differential scanning calorimetry dem-
onstrated that the toxin decreased the tempera-
ture at which the lipid transitions from a bilayer to

a nonlamellar phase, while 31P nuclear magnetic
resonance studies showed that the LtxA-induced
transition from a bilayer to an inverted hexagonal
phase occurs through the formation of an isotro-
pic intermediate phase. These results indicate that
LtxA cytotoxicity occurs through a process of
membrane destabilization.

Introduction

A secreted leukotoxin (LtxA) plays a key role in the virulence
of Aggregatibacter actinomycetemcomitans (Zambon,
1985; Tsai and Taichman, 1986). LtxA is a member of
the repeats in toxin (RTX) family, which includes an
a-haemolysin produced by Escherichia coli and the ade-
nylate cyclase toxin (ACT) produced by Bordetella pertus-
sis, the causative agent of whooping cough. LtxA shares
with the other members of the family a common operon
organization and the functional domains of its structural
toxin gene product. LtxA is synthesized as an inactive
protoxin from the ltxA gene, which is part of a four-gene
operon (ltxC, ltxA, ltxB, ltxD). LtxC is an acyltransferase,
which activates the structural toxin gene product (proLtxA)
through covalent post-translational acylation at the
e-amino groups of Lys562 and Lys687 (Fong et al., 2011).
LtxB and LtxD, along with TdeA (Crosby and Kachlany,
2007), a TolC homologue (Balakrishnan et al., 2001), form
a type I secretion system that facilitates the secretion of the
toxin directly from the bacterial cytoplasm into the extra-
cellular environment. The structural toxin gene product
(LtxA) contains 1055 residues that are organized into four
functional domains (Lally et al., 1989), archetypal for the
RTX family, consisting of (i) an N-terminal hydrophobic
domain composed of a-helices, some of which are amphi-
pathic helices, structures often associated with transmem-
brane segments or protein pores, (ii) a central region
recognized by the acyltransferase, (iii) a repeat region
containing 14 canonical nonapeptide repeat units with the
sequence [(L/I/F)-X-G-G-X-G-(N/D)-D-X] that forms a
calcium-binding site (Baumann and Mueller, 1974; Lally
et al., 1991), and (iv) the C-terminal domain, which is
required for secretion of the toxin (Jarchau et al., 1994).

Although LtxA is believed to be a membrane-damaging
toxin, the mechanistic details of the interaction of the
toxin with the lipid bilayer of the cell remain unknown, as
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structural models of LtxA and the other RTX toxins are not
currently available. Early studies (Ludwig et al., 1998)
suggested that RTX-induced cell death is the result of
toxin-generated transmembrane pores that disrupt the
ability of the cell to maintain osmotic equilibrium. Evi-
dence for pore formation by these toxins came through
artificial planar bilayer experiments with toxins from E. coli
(Menestrina et al., 1987; Benz et al., 1989), Actinobacillus
pleuropneumoniae (Lalonde et al., 1989), B. pertussis
(Benz et al., 1994), Proteus vulgaris and Morganella mor-
ganii (Benz et al., 2005). LtxA-induced channel conduc-
tance was shown to be complex, with multiple open states
and voltage-dependent gating, suggesting that a molecu-
lar reordering at the toxin–membrane interface may be
necessary to induce membrane damage (Lear et al.,
1995). This notion is consistent with our observation that
LtxA did not spontaneously insert into pre-formed planar
lipid bilayers (Lear et al., 1995), but channel activity was
observed when the bilayer was broken and reformed in
the presence of toxin.

Osmotic protectant experiments have been used to
predict the size of pores formed by a number of RTX
toxins but initially resulted in disagreement on this issue,
with predicted pore sizes ranging from 0.6 nm for B. per-
tussis ACT (Ehrmann et al., 1991) to 3 nm for E. coli
a-haemolysin (Bhakdi et al., 1986). The LtxA-induced
pore size was predicted to be 0.9 nm in diameter (Iwase
et al., 1990). Additional studies have revealed that the
RTX-induced pore size depends on a number of factors,
including temperature, time and toxin concentration, and
therefore suggests that rather than being a static process,
RTX pore formation is a complex, dynamic process
(Moayeri and Welch, 1997).

In the current work, we have studied the nature of the
lipid–protein interaction to define the interaction of LtxA
with membranes in the context of membrane disruption,
using confocal microscopy, scanning electron microscopy

(SEM), fluorescence spectroscopy, differential scanning
calorimetry (DSC) and 31P nuclear magnetic resonance
(31P NMR) to gain an understanding of this initial, yet vital,
interaction. Fluorescently labelled toxin was found to asso-
ciate with immune cell membranes in the form of protein-
rich ‘domains’. SEM demonstrated that human immune
cell lines incubated with LtxA for 30 min were smoothed
and contained large depressions; after 3 h, the toxin-
treated cells contained large, lipid-lined cavities, suggest-
ing that LtxA had deformed the cell membrane. We then
investigated the membrane-disrupting ability of LtxA as a
function of lipid composition and found that LtxA induces
significant leakage of a fluorescent dye from liposomes
composed of lipids favouring formation of nonlamellar
phases but not from liposomes containing lipids that pre-
clude formation of nonlamellar phases. DSC showed that
LtxA causes a dose-dependent bilayer disruption while the
31P NMR studies revealed that this transition involves a
change from a bilayer to an isotropic intermediate phase,
followed by an inverted hexagonal (HII) phase. From our
current studies, we conclude that rather than forming a
transmembrane pore, LtxA mediates membrane damage
by modifying the membrane bilayer structure.

Results

LtxA clusters on immune cell membranes

Fluorescein isothiocyanate (FITC)-labelled LtxA (4 ¥
10-6 M) was incubated with 1 ¥ 106 Jn.9 cells (Cherry
et al., 2001) (30 min, 37°C), stained with wheat germ
agglutinin-Alexa Fluor 594 (WGA-AF594), and examined
by confocal microscopy to visualize the association of
LtxA with the target cell membrane. LtxA was found to be
clustered on the target cell surface (Fig. 1), with most cells
containing several LtxA-rich clusters. The membrane
appeared to be continuous, and no breaks, which would
indicate pore formation, were observed.

Fig. 1. Localization of fluorescein-labelled LtxA on the surface of target cells. Top row: untreated control cells, Bottom row: LtxA-treated
(30 min) cells.
A and E. Phase contrast image.
B and F. FITC (LtxA) stain. Arrows indicate LtxA clusters.
C and G. WGA-AF594 (membrane) stain.
D and H. FITC and WGA-AF-594 merge. Arrows indicate colocalization. Bar = 10 mm.

870 A. C. Brown et al.

© 2012 Blackwell Publishing Ltd, Cellular Microbiology, 14, 869–881

 14625822, 2012, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1462-5822.2012.01762.x by U

niversity O
f Pennsylvania, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LtxA induces morphological changes in immune
cell membranes

Jn.9 cells (5 ¥ 106 cells m-1) were incubated at 37°C with
LtxA (10-9 M). Cells were removed after 30 min and 3 h,
fixed in Karnofsky’s solution and examined on a JEOL
JSM-T330A scanning electron microscope. The untreated
control cell surfaces (Fig. 2A1–3) contained short, stubby
projections (microvilli) on the surface. A change in surface
membrane morphology, however, was observed in cells
exposed to LtxA. We observed a collapse of the microvilli
and membrane ruffles, resulting in a smooth cell surface
in this group (Fig. 2B1–3). Focal depressions (D) on the
membrane surface were also a prominent feature of this
experimental group. Three hours following toxin expo-
sure, multiple large cavities (C) were observed to arise
from these depressions in most of the target cell mem-
branes (Fig. 2C1–3).

The LtxA-induced membrane lesions were then exam-
ined in greater detail using Ga3+ focused ion beam (FIB)
sections (Fig. 3). Control cells again showed the pres-
ence of microvilli on the surface (Fig. 3A1), and the FIB
cut-cell surface was contiguous (Fig. 3A2). The mem-
brane depressions we observed after a 30 min toxin
treatment could also be seen on the cut section but did
not demonstrate gross evidence of membrane damage
(Fig. 3B1–3B4). Closer examination of the concavities
(Fig. 3C1–3C4) revealed that the outer and inner surfaces
of the cell membrane could be visualized throughout the
course of these depressions and suggests that the origin

may be a toxin-induced bending of the structure. An
irregular tear in the membrane could be seen at the
base of the defect (Fig. 2C4), further suggests that
the mechanism of membrane disruption weakens the
membrane.

LtxA-induced morphological changes
are lipid-dependent

The distinct toxin-induced changes in immune cell mor-
phology suggest that LtxA may disrupt the stable bilayer
structure of the cell membrane. Because lipid composition
and the subsequent phase behaviour determine mem-
brane structure, we investigated the membrane-disrupting
ability of LtxA as a function of lipid composition, specifi-
cally in terms of the types of structures adopted by each
lipid. Saturated phosphatidylcholines (PCs), such as 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), form
flat, bilayer structures (Fig. 4A, top panel), and saturated
lysoPCs, such as 1-stearoyl-2-hydroxy-sn-glycero-3-
phosphocholine (SPC), form micelles or hexagonal (HI)
phases (Fig. 4A, centre panel). Phosphatidylethanola-
mines (PEs), such as 1,2-dimyristoyl-sn-glycero-3-
phosphoethanolamine (DMPE), which have a more
hydrophobic headgroup than PC (Yeagle and Sen, 1986),
form nonlamellar structures including cubic and inverted
hexagonal (HII) phases (Fig. 4A, bottom panel) to mini-
mize contact of the headgroup with water (Yeagle and
Sen, 1986).

Fig. 2. LtxA mediates collapse of microvilli on
Jn.9 target cells. The samples were prepared
for conventional scanning electron microscopy
of an untreated control (Fig. 2A1–3) and
experimental groups after 30 min (Fig. 2B1–3)
and 3 h (Fig. 2C1–3) of incubation with LtxA
(1 ¥ 10-9 M). Images are representative of the
unique phenotypes observed within each
group in three independent experiments. All
images were acquired at ¥ 6000 and bars
equal 2.5 mm. MV, microvilli; D, depression;
C, cavity.

LtxA-induced membrane destabilization 871
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To identify the mechanism of membrane disruption by
LtxA, we studied LtxA-induced leakage from fluorescent
dye (calcein)-encapsulating liposomes. The liposomes
contained the di-saturated PC, DPPC, in one of three
compositions: (i) 100% DPPC, (ii) DPPC and SPC (3:1),
or (iii) DPPC and DMPE (3:1). The leakage experiments
were performed at a temperature of 30°C. LtxA-induced
membrane disruption was measured by release of the dye
from liposomes treated with toxin in a dose-dependent
manner.

Representative leakage profiles from liposomes com-
posed of each of these lipid combinations, treated with
toxin (mole fraction of 0.0013), are shown in Fig. 4B.
The extent of leakage after 30 min of LtxA exposure is
shown in Fig. 4C for all three lipid compositions, at six
toxin concentrations. As shown in Fig. 4C, calcein
leakage from toxin-treated liposomes containing only
DPPC was very low at all toxin levels, but increased
slightly with increasing mole fractions of LtxA. Similarly,
almost no calcein leaked from toxin-treated liposomes
composed of DPPC/SPC (3:1); however, in contrast to
DPPC liposomes, in these liposomes, an increase in
LtxA mole fractions did not increase leakage. Compared
with these two liposome types, leakage from toxin-
treated liposomes composed of DPPC/DMPE (3:1)
was significant and dose-dependent. These results
suggest that membrane disruption is most favourable in
toxin-treated liposomes containing some DMPE and is

entirely unfavourable in toxin-treated liposomes contain-
ing SPC.

Because LtxA-mediated membrane disruption is greatly
enhanced by the presence of DMPE and inhibited by the
presence of SPC, the results suggest that formation of a
HII phase may play a role in the toxin’s mode of action. We
therefore investigated the effect of two lipids that inhibit HII

phase formation, SPC (Fuller and Rand, 2001) and the
bilayer stabilizer, cholesterol sulfate (CS) (Cheetham
et al., 1990), on LtxA-induced membrane disruption in
liposomes containing DMPE. Leakage was measured
from liposomes composed of either DPPC/DMPE/SPC
(2:1:1) or DPPC/DMPE/CS (2:1:1) and treated with toxin
(mole fraction of 0.001). Leakage from LtxA-treated lipo-
somes composed of DPPC/DMPE/SPC (2:1:1) was sub-
stantially reduced relative to the leakage from toxin-
treated liposomes composed of DPPC/DMPE (3:1)
(Fig. 4D), indicating that SPC inhibits LtxA membrane dis-
ruption in these PE-containing liposomes. In addition,
leakage from toxin-treated liposomes composed of
DPPC/DMPE/CS (2:1:1) was reduced to an even greater
extent (Fig. 4D) at the same toxin mole fraction. These
results demonstrate that the membrane disruption that is
favoured in PE-containing membranes is inhibited by
lipids that inhibit nonlamellar phase formation, suggesting
that LtxA membrane disruption might proceed through the
formation of a nonlamellar lipid phase (Fuller and Rand,
2001; Epand, 2007).

Fig. 3. SEM images of LtxA-treated Jn.9 cells.
A. Jn.9 cell, which has not been exposed to LtxA. This control cell was sliced coronally with a Ga3+ FIB (A1).
B. Jn.9 cell exposed to LtxA (1 ¥ 10-9 M) for 30 min.
C. Jn.9 cell exposed to LtxA (1 ¥ 10-9 M) for 3 h. The toxin-treated cells were serially sliced coronally with the FIB (B2–B4 and C2–C4).
MV, microvilli; D, depression; C, cavity; T, tear. Bar = 5 mm.

872 A. C. Brown et al.
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LtxA destabilizes membrane structure by inducing a lipid
phase change

To determine if LtxA induces a lipid phase change (from a
bilayer to HII phase) in the membrane of the target cells,
both DSC and 31P NMR were employed. The DSC experi-
ments examined a shift in the bilayer-to-HII (nonlamellar)
phase transition temperature (TH) of 1,2-dipalmitoleoyl-sn-
glycero-3-phosphoethanolamine (di16:1-PE). This lipid
was chosen because it has a TH of 44.5°C and therefore
avoids the need for scanning at higher temperatures at
which the toxin may become denatured. The effect of the
progressive addition of LtxA to di16:1-PE liposomes was
measured to determine the toxin’s effect on the transition
of the lipid from a lamellar (bilayer) to a HII phase
(Fig. 5A). The peak in each DSC scan represents the TH,

with the membrane existing in a bilayer phase at tempera-
tures below the TH and in an HII phase at temperatures
above the TH.

In the absence of LtxA, the TH of di16:1-PE is 44.5°C;
addition of toxin resulted in peak broadening and a shift of
the TH to lower temperatures. Regression analysis of the
curve of TH as a function of the mol fraction of toxin
resulted in a slope of -7570 � 1400 (Fig. 5B). The sensi-
tivity of the TH to LtxA and the direction of the shift to lower
temperatures provide a strong indication that the toxin is a
potent modulator of membrane structure and acts by dis-
rupting the bilayer through the formation of a nonlamellar
phase.

The nature of this toxin-induced non-bilayer phase was
studied using 31P NMR. The 31P NMR spectra of multila-
mellar liposomes composed of 1,2-dioleoyl-sn-glycero-3-

Fig. 4. LtxA-induced leakage of calcein.
A. Structure of the lipids used in the leakage study.
B. Representative scans of leakage at a protein mole fraction of 0.0013 from liposomes composed of DPPC (100%) ( ), DPPC/SPC (3:1) ( )
and DPPC/DMPE (3:1) ( ).
C. Leakage of calcein after 30 min of incubation with LtxA for liposomes composed of DPPC (100%) ( ), DPPC/SPC (3:1) ( ) and
DPPC/DMPE(-) (3:1) ( ).
D. LtxA-induced leakage of calcein at a protein mole fraction of 0.0010 for liposomes composed of DPPC (100%), DPPC/SPC (3:1),
DPPC/DMPE (3:1), DPPC/DMPE/SPC (2:1:1) or DPPC/DMPE/CS (2:1:1). Results are statistically significant (P < 0.001) for differences
between the control (DPPC/DMPE) and both DPPC/DMPE/SPC and DPPC/DMPE/CS.

LtxA-induced membrane destabilization 873

© 2012 Blackwell Publishing Ltd, Cellular Microbiology, 14, 869–881
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phosphoethanolamine-N-methyl (N-methyl DOPE) were
collected as a function of temperature, either without toxin
(-LtxA) or with a toxin mole fraction of 0.0001 (+LtxA).
This particular lipid was chosen because of its well-
studied phase behaviour (Boesze-Battaglia et al., 1992;
van Gorkom et al., 1992; Siegel and Tenchov, 2008) and
its experimentally convenient TH of 55°C, which prevents
the need for extreme temperature scans.

Without toxin treatment, the liposomes composed of
N-methyl DOPE were found to exist in a bilayer phase at
temperatures between 10°C and 40°C, as evidenced by
the maximum in the spectra at a chemical shift of approxi-
mately -14 p.p.m. and from the shape of the powder
pattern (Fig. 6A). At 50°C, both bilayer (-14 p.p.m.) and
isotropic peaks (maximum at 0 p.p.m.) were observed,
indicating that at this temperature, the lipid was in the
transition between the bilayer and a nonlamellar phase. At
temperatures of 60°C and above, an isotropic (0 p.p.m.)
peak was observed, along with a maximum at a chemical
shift of approximately 6 p.p.m., corresponding to the HII

phase (Fig. 6A). Treatment of these liposomes with a
toxin mole fraction of 0.0001 altered this behaviour sig-
nificantly (Fig. 6B). At a temperature of 10°C, both bilayer
(-14 p.p.m.) and isotropic (0 p.p.m.) peaks were observed
in toxin-treated liposomes, and the relative intensity of
these maxima shifted with increasing temperatures, indi-
cating a temperature-dependent increase in the isotropic
nature and a decrease in the bilayer nature of the mem-
brane. At 50°C, the HII (6 p.p.m.) and isotropic (0 p.p.m.)
peaks dominated, but a small bilayer (-14 p.p.m.) peak
remained. As the temperature increased to 60°C and
70°C, the bilayer (-14 p.p.m.) peak disappeared, leaving
only the HII (6 p.p.m.) and isotropic (0 p.p.m.) peaks.

Discussion

The interaction of LtxA with the membrane of a suscep-
tible cell disrupts the selective barrier function performed
by this structure. The process is complex, especially when
one attempts to generate unifying hypotheses from obser-
vations obtained from experiments with individual RTX
toxins. The current report has focused on LtxA to charac-
terize the modifications induced by this toxin to the bilayer
structure of both cells and model membranes. In our
studies, the use of model membranes demonstrated the
ability of LtxA to perturb a stable planar bilayer arrange-
ment. Although it is possible to construct liposomes that
contain the same lipids as the plasma membranes
of immune cells, the systems would still be expected
to behave quite differently because there would be no
proteins or transmembrane asymmetry in the model
membrane system. Furthermore, one cannot measure
isotropic peaks in liposomes with these ‘natural’ lipid mix-
tures. Therefore, the liposomes utilized in our studies
were not meant to be models for the biological membrane
but rather as sensitive indicators of protein-induced
bilayer pertubation.

We demonstrated that LtxA associates with the immune
cell membrane in clustered, LtxA-rich regions (Fig. 1). The
morphological changes caused by the association of LtxA
with the membrane were investigated using SEM (Fig. 2).
These studies clearly demonstrated two types of toxin-
induced membrane defects: (i) collapse of the microvilli
normally present on the outer surface of the cells and (ii)
the formation of cell surface depressions and then cavi-
ties. Hemi-sectioning of individual cells through these
membrane defects with a Ga3+ beam showed that the

Fig. 5. Effect of LtxA on bilayer-to-hexagonal phase transition of di16:1 PE.
A. Raw DSC scans showing the phase transition temperature of liposomes treated with increasing concentrations of LtxA.
B. TH of each scan as a function of LtxA mol fraction.
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surface of the cavity retained a similar morphology as the
surface of the cell, suggesting that the cavities are lipid-
lined. In addition, the membrane appears to be continu-
ous through the cross-section of the depression, thereby
suggesting that the disruptions are being produced by a
toxin-induced weakening of the membrane.

The results presented here likely exclude the possibility
of LtxA forming a barrel-stave pore, in which the protein
inserts directly into a membrane to form a protein-lined
annulus (Baumann and Mueller, 1974; Sansom, 1991).
Toroidal pore formation was likewise excluded by the
effect of lipid composition on LtxA-induced pore formation
in calcein-loaded liposomes composed of combinations of

lipids (Fig. 3). Melittin, a known toroidal pore former, has
been shown to induce leakage to a greater extent from
liposomes containing lyso-lipids and to a lesser extent
from liposomes containing PEs and other nonlamellar
lipids (Allende et al., 2005; Lee et al., 2005). We found
that the behaviour of LtxA was exactly opposite; LtxA-
induced membrane disruption was significant only in lipo-
somes containing nonlamellar lipids and was significantly
less in the membranes composed of bilayer-forming
DPPC and/or micelle-forming SPC. Furthermore, LtxA-
induced membrane disruption occurred more slowly and
to a lesser extent than does melittin-induced leakage
(Benachir and Lafleur, 1995; Allende et al., 2005). These

Fig. 6. 31P NMR spectra of N-methyl-DOPE liposomes.
A. N-methyl-DOPE liposomes without LtxA.
B. N-methyl-DOPE liposomes treated with an LtxA mole fraction of 0.0001. Spectra were collected at 10°C, 20°C, 30°C, 40°C, 50°C, 60°C
and 70°C.

LtxA-induced membrane destabilization 875

© 2012 Blackwell Publishing Ltd, Cellular Microbiology, 14, 869–881

 14625822, 2012, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1462-5822.2012.01762.x by U

niversity O
f Pennsylvania, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



results suggest that toxin-induced membrane disruption
does not occur through the formation of a transmembrane
pore but may instead be the result of membrane destabi-
lization. The specificity of the interaction of LtxA with
membranes containing PEs, which promote the formation
of nonlamellar phases, indicated that this destabilization
may be related to nonlamellar phase formation. The ability
of the nonlamellar phase inhibitors (SPC and CS) to
greatly inhibit leakage from PE-containing liposomes
(Fig. 4D), further strengthens this argument.

Differential scanning calorimetry and 31P NMR (Figs 5
and 6) were employed to determine if LtxA induces the
formation of a nonlamellar phase, and if so, to identify the
specific nonlamellar structure that is formed. The DSC
studies demonstrated that LtxA is a potent nonlamellar
phase inducer whose effect on membranes, on a molar
basis, rivals classic TH-lowering compounds such as
alkanes and diacylglycerols (DAGs) (Epand, 2002). The
31P NMR experiment further revealed that the LtxA-
induced nonlamellar phase induction occurs by promotion
of the HII phase through an isotropic intermediate. In addi-
tion, both DSC and 31P NMR demonstrated that LtxA
broadens the transition temperature from the bilayer to
the nonlamellar phases. Along with lowering TH and
broadening the transition, the toxin increased the relative
amount of HII phase that was formed at temperatures
above TH. For example, at 60°C, in the absence of toxin,
the membrane primarily consisted of an isotropic phase,
with a small amount of HII phase, as evidenced by the
relative peak intensities at approximately 0 p.p.m. and 6
p.p.m. respectively. At this same temperature, in the pres-
ence of toxin, the isotropic and HII peaks were approxi-
mately equal in height, indicating that the toxin increased
the relative amount of HII phase.

The dimensions of the structure giving rise to the iso-
tropic 31P NMR spectra could range from less than 100 nm
(micelle) to several microns (cubic phase structure). Fur-
thermore, it is not possible to compare the measurements
of the structures represented by the NRM spectra with the
features observed in the cell membrane by SEM except to
say that both are the result of destabilization of the lipid
bilayer structure of the membrane by LtxA. Previously, we
have shown that LtxA binding to LFA-1 induces the for-
mation of large LtxA-LFA-1 and cholesterol-rich rafts. The
cell surface depressions observed on the SEM micro-
graphs may be a consequence of LFA-1- and cholesterol-
dependent clustering; however, the fact that it is sunken
suggests that the bilayer disruption plays a role in this
process as well.

Smoothing of the cell membrane caused by the col-
lapse of microvilli is a feature of T cells that occurs as a
result of integrin activation and cleavage from the cytosk-
eleton (Burkhardt et al., 2008). Certain aspects of the
interaction between LtxA and LFA-1 have been shown to

mimic ‘outside-in’ integrin activation signals such as
elevation of cytosolic Ca2+, activation of calpain, talin
cleavage and clustering of LFA-1 and LtxA in the raft
compartment (Fong et al., 2006).

Previous work in our lab and others’ has shown that
LFA-1 is required for cytotoxicity of LtxA (Lally et al., 1997;
Dileepan et al., 2007; Kieba et al., 2007); however, the
current report has shown that membrane disruption is
occurring in liposomal systems that do not contain LFA-1.
The reasons for this observation are not clear, although it
has been shown that LtxA will lyse sheep red blood cells
under certain conditions (Balashova et al., 2006). In pre-
vious work, we produced, screened, and mapped the
epitopes of a panel of monoclonal antibodies that inhibited
LtxA killing of HL-60 cells (Lally et al., 1994). The inhibi-
tory antibodies segregated in one of three epitopes: (i)
epitope A, composed of residues 698–709, which are
near one of two LtxA acylation sites (Lys687) (Fong et al.,
2011), (ii) epitope B (residues 746–757), containing the
second and third glycine-rich repeats, and (iii) epitope C
(residues 926–937), a region that is distal to the glycine
repeats. The identification of three ‘inhibitory’ epitopes
stimulated us to see if the same regions are critical for
haemolysis. Monoclonal antibodies to epitope A inhibited
toxin-induced red blood cell lysis, while blocking either
epitope B or C with an mAb had no effect on haemolysis
(Lally et al., 1999). These results suggest that at least two
separate processes occur in LtxA killing–membrane dis-
ruption leading to haemolysis/osmolysis (associated with
epitope A) and a white blood cell-specific interaction
(associated with epitopes B and C). This has led us to
postulate that LFA-1 binding and bilayer disruption are
two separate stages in LtxA-mediated cell death. The
interaction of LtxA with liposomes most closely resembles
what occurs at epitope A, a non-LFA-1-dependent inter-
action of LtxA with the membrane that initiates a destabi-
lization of the bilayer. Following this initial membrane
contact, engagement of epitopes B and C may well stimu-
late the apoptotic signal observed by Kelk (Kelk et al.,
2003; 2011) through LFA-1 contact.

The presence of nonlamellar lipids in the cell mem-
brane is thought to provide the membrane with structural
‘plasticity,’ for situations in which a break in the membrane
is required, such as fusion or endocytosis (Gruner, 2005).
The vital role of nonlamellar lipids in these processes,
particularly membrane fusion, has been well studied
(Siegel, 2005). In particular, isotropic 31P NMR reso-
nances have been correlated with liposome fusion, indi-
cating that these structures may represent intermediates
in the fusion process (Ellens et al., 1989). In addition,
divalent cations, particularly Ca2+, have been shown to
promote liposome fusion, and in some lipid systems, this
is correlated with the ability of cations to promote non-
lamellar phases (Ortiz et al., 1992; 1999). It is possible
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that the elevation of cytosolic Ca2+ that occurs upon initial
interaction of the toxin with Jn.9 cells (Fong et al., 2006)
may enhance membrane disruption by the toxin, through
the promotion of nonlamellar phase formation. Nonlamel-
lar phases have also been proposed to be involved in lipid
translocation (Cullis and de Kruijff, 1979), and the induc-
tion of these structures by LtxA may be a means by which
the toxin penetrates the bilayer. In either case, we
propose that LtxA, in its initial interaction with the host cell,
takes advantage of the presence of nonlamellar lipids in
the membrane, using them to increase the negative cur-
vature strain, thereby destabilizing the membrane bilayer.

The ability to disrupt liposomes containing nonlamellar
lipids is a common observation among the various RTX
toxins. For example, the B. pertussis ACT induces
leakage preferentially from liposomes containing PE
(Martin et al., 2004), the Vibrio cholerae cytolysin (VCC)
induces significant leakage from liposomes containing
DAG or ceramide (Zitzer et al., 2001), and the E. coli
a-haemolysin causes an increase in conductance across
bilayers containing PE (Bakas et al., 2006). Interestingly,
the nonlamellar lipid dependence of several RTX toxins
was hinted at in the early planar bilayer experiments, in
which it was widely reported that ‘channel’ formation by a
number of these toxins was significantly more favourable
in membranes made of asolectin or PC : PE (5:1) than in
pure PC membranes (Menestrina et al., 1987; Benz et al.,
1989; 1994; 2005; Maier et al., 1996). Initially, the obser-
vation that channel formation is more favourable in
asolectin membranes was attributed to either the required
presence of multiple lipid components or the possible
presence of a receptor in the asolectin membranes.
However, because the PC/PE mixture that makes up the
major portion of asolectin (McCormick and Johnstone,
1998) is able to adopt a non-bilayer structure, the present
data support the possibility that induction of a nonlamellar
phase represents a mechanism of membrane disruption

that is conserved among the various RTX toxins. The
ability of other protein toxins, such as aerolysin, produced
by Aeromonas hydrophila (Alonso et al., 2000); stichol-
ysins I and II, produced by Stichodactyla helianthus
(Valcarcel et al., 2001); equinatoxin II, produced by sea
anemones (Anderluh et al., 2003); and streptolysin O
(Zitzer et al., 2001), to interact with nonlamellar lipids in
model membranes further raises the possibility of non-
lamellar phase induction by other protein toxins as well.

We have developed a model, based on the results
presented here, to describe the mode of action of LtxA
and perhaps other RTX toxins (Fig. 7). In this model, we
propose that the hypothesized conformational change in
the toxin upon association with the lipid bilayer may allow
the hydrophobic residue-rich portion of the toxin to insert
into the membrane. This hypothesized conformational
change may initiate the formation of nonlamellar struc-
tures, thereby weakening the membrane. At this time, it is
unknown if the toxin remains associated with the mem-
brane or if it is translocated to the interior of the cell where
it may induce further damage. We are currently investi-
gating possible cytoplasmic functions of the translocated
toxin, as well as conformational changes in the toxin upon
membrane interaction. This model highlights the impor-
tance of membrane composition in LtxA-induced mem-
brane disruption, and demonstrates that bilayer disruption
is an important initial step in the cytotoxicity of LtxA.

Experimental procedures

Chemicals

Sodium chloride (NaCl), calcium chloride (CaCl2), sodium
azide (NaN3), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic
acid (HEPES), ethylenediaminetetraacetic acid (EDTA), Trizma
base, Sephadex G-50, and calcein were purchased from Sigma
Chemical (St Louis, MO, USA). Triton X-100 and potassium
phosphate monobasic were purchased from Fisher Scientific.

Fig. 7. Proposed model of HII-phase membrane disruption. In this model, the acyl group of LtxA initially contacts the cell membrane, and the
toxin undergoes a conformational change in which part of the toxin inserts into the membrane. This induces formation of an isotropic phase,
resulting in a destabilization of the membrane.

LtxA-induced membrane destabilization 877

© 2012 Blackwell Publishing Ltd, Cellular Microbiology, 14, 869–881

 14625822, 2012, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1462-5822.2012.01762.x by U

niversity O
f Pennsylvania, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Lipids, including di16:1-PE, DPPC, DMPE, N-methyl DOPE, and
SPC, were purchased from Avanti Polar Lipids (Alabaster, AL,
USA). All chemicals were used without further purification.

Cell culture

Jn.9, a subclone of the Jurkat cell line (Cherry et al., 2001) was
a gift from Dr. Lloyd Klickstein (Novartis Institute for Biomedical
Research, Cambridge, MA, USA). The cells were maintained at
37°C under 5% CO2 in RPMI 1640 (Mediatech Cellgro, Herndon,
VA, USA) containing 10% fetal calf serum (FCS), 0.1 mM MEM
non-essential amino acids, 1 ¥ MEM vitamin solution, 2 mM
L-glutamine, and 50 mg ml-1 gentamicin.

LtxA purification

Aggregatibacter actinomycetemcomitans, strain JP2, was
grown overnight in AAGM broth (Fine et al., 1999). LtxA was
purified by precipitating the bacterial culture supernatant with
ammonium sulfate (32.5%, 4°C, 2 h) (Kachlany et al., 2002).
The precipitate was recovered by centrifugation (10 000 r.p.m.,
20 min), suspended in phosphate buffer (10 mM PO4, pH 6.5),
and dialysed overnight. After dialysis, the supernatant was
filtered and diluted to 200 ml in phosphate buffer before being
applied to a HiTRAP SP column (GE Healthcare, Piscataway,
NJ, USA) that had been equilibrated in the same buffer. The
column was then washed with phosphate buffer until the optical
density (OD280) returned to background levels. Next, the buffer
was changed to 20% NaCl in phosphate buffer and the column
was washed until the protein level again reached background
level. Finally, LtxA was eluted with a buffer containing 60%
NaCl in phosphate buffer. The toxin was lyophilized and stored
at -80°C. The purity of LtxA was confirmed by cytotoxicity,
Western blotting and SDS-PAGE and quantified with the
Bio-Rad Protein Assay.

Confocal microscopy

Purified LtxA was labelled with FITC using a Pierce FITC anti-
body labelling kit (Thermo Fisher Scientific, Rockford, IL, USA)
according to the manufacturer’s instructions. Labelled LtxA
(4 ¥ 10-6 M) was added to 1 ml of Jurkat (Jn.9) cells
(106 cells ml-1) and incubated at 37°C for 30 min. This toxin con-
centration was required to obtain a suitable fluorescence signal.
The cells were then incubated for 10 min with WGA-AF594
(5 mg ml-1) to stain the membranes. The cells were imaged at
100 ¥ magnification on a Nikon A1 confocal microscope,
equipped with an Ar laser and a 4-photomultiplier tube detector.
The excitation wavelengths for FITC and WGA-AF594 were
488.0 and 561.4 nm, respectively and the emission wavelengths
were 525.0 and 595.0 respectively.

SEM

LtxA (1 ¥ 10-9 M) was added to 1 ml of Jurkat (Jn.9) cells
(0.5 ¥ 106 ml-1) and incubated at 37°C (Karakelian et al., 1998;
Fong et al., 2006) for 30 min to 3 h. Aliquots were removed at
various time points and immediately fixed in Karnofsky’s fixative.
The solutions were washed with ethanol and Freon and then

filtered. They were then mounted, coated with gold, and imaged
on a JEOL 7500F high-resolution SEM (JEOL, Tokyo, Japan).
Coronal slicing was performed with a FEI Strata DB235 FIB (FEI
Company, Hillsboro, Oregon).

Calcein leakage

Liposomes to be used in the calcein leakage assay were
prepared using the rapid solvent exchange technique (Buboltz
and Feigenson, 1999). The required amounts of phospholipids,
dissolved in chloroform were added to 7 ml glass scintillation
vials. Warm calcein buffer (150 mM NaCl, 10 mM Tris, 1 mM
EDTA, 100 mM calcein, pH = 7.4) was added, and the solution
was vortex mixed while simultaneously exposed to vacuum
(-20 bar). The resulting lipid solution was freeze-thawed five
times, heated above the gel-liquid transition temperature (Tm),
and extruded through a polycarbonate filter with 200 nm pores
at least 11 times. Calcein-encapsulated liposomes were sepa-
rated from free calcein by size exclusion chromatography in a
column filled with Sephadex G-50, eluted with an isotonic
column buffer (300 mM NaCl, 10 mM Tris, 1 mM EDTA,
pH = 7.4).

Toxin-induced leakage was determined by measuring the
release of calcein from liposomes. LtxA, rehydrated in the column
buffer, was added to the calcein-encapsulating liposomes in the
specified protein mole fractions and incubated at 30°C. Within the
liposome, calcein was initially at a self-quenching concentration
(100 mM); calcein release was measured by the increase in
fluorescence intensity due to calcein dilution after toxin addition
(IF), relative to the baseline fluorescence intensity (IB) and the
fluorescence intensity after 100% leakage (IT) obtained by adding
0.1% Triton X-100. The percentage of released calcein (%R) was
determined by

%R I I I IF B T B= −( ) −( ) (1)

The excitation wavelength was set at 490 nm, and the emis-
sion spectrum was recorded in the range of 500 to 550 nm, with
excitation and emission slits set at 3 nm on a Perkin Elmer
fluorescence spectrometer, model LS-55. A blank run in which
buffer was added to the liposome suspension was subtracted
from each sample run, so that the calculated release is due only
to LtxA.

DSC

Measurements were made in a Nano II Differential Scanning
Calorimeter (Calorimeter Sciences Corporation, Lindon, UT,
USA). Lipid films of 1 mg of di16 : 1-PE were hydrated at room
temperature with solutions of LtxA in 10 mM potassium phos-
phate at a pH of 6.5, to give the specified mole fractions of
peptide. The mixtures were vortexed vigorously to make multila-
mellar vesicles and then degassed before loading into the
sample cell of the calorimeter. Controls using peptide solutions in
the sample cell in the absence of lipid showed no transition.
Degassed buffer was placed in the reference cell. DSC was
performed at a scan rate of 1.0 degree min-1. Blank runs of buffer
vs. buffer were subtracted from sample runs. Each point was
collected using a fresh sample. The resulting curves were analy-
sed by using the fitting program provided by Microcal (Northamp-
ton, MA, USA) and plotted with Origin version 7.0.
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31P NMR

A lipid film was created by dissolving the required amounts of
N-methyl-DOPE in chloroform in a glass vial. The chloroform was
evaporated under a stream of nitrogen, and the residual chloro-
form was removed under vacuum. Multilamellar vesicles were
created by hydrating the lipid film with buffer containing 150 mM
NaCl and 10 mM HEPES at a pH of 7 to a final lipid concentration
of 200 mM. Immediately before the NMR experiments, the con-
centrated liposome solution was mixed with an equal volume of
either buffer or LtxA at a concentration of 20 mM, creating a
lipid : protein ratio of 10 000:1; the NMR samples also contained
10% D2O.

The considerations for the acquisition of 31P NMR spectra of
phospholipids have been reviewed by Yeagle and Kelsey (Yeagle
and Kelsey, 1989). 31P spin echoes (Hahn, 1950) were acquired
with the Meiboom-Gill modification (Meiboom and Gill, 1958) of
the Carr-Purcell pulse sequence (Carr and Purcell, 1954). Spe-
cifically, a minimal two-echo scheme with a 5.2 ms refocusing
delay was used. All pulse receiver gating delays were set to zero.
The pre-acquisition delay was adjusted in order to capture the
echo peak and properly define the broad spectral components
that correspond to the fastest decaying parts of the free induction
decay (FID).

31P NMR spectra were acquired at the specified temperatures
using a Varian INOVA NMR spectrometer (Agilent Technologies,
Santa Clara, CA, USA), operating at a proton frequency of
499.9 MHz and equipped with a 5 mm dual broadband z-gradient
probe. Typically, 2048 scans of 131 K complex data points over a
100 kHz spectral width were collected with a 1 s relaxation delay.
All spectra were acquired with broadband proton decoupling
gated on during acquisition and off during the remainder of the
time.

The temperature-dependence study was conducted from low
to high temperatures in order to avoid any possible kinetic barri-
er(s) to phase transition(s). As the temperature was raised, the
sample changed from an off-white dispersion to a solution of
white flocculants that floated outside the NMR probe coil region,
resulting in the loss of NMR signal. This necessitated the use of
water-matched Shigemi tubes, which restrict the whole sample
within the coil region of the NMR probe.

Data sets were processed on a Sun Blade 100 workstation
(Sun Microsystems, Palo Alto, CA, USA) using the VnmrJ soft-
ware package (Agilent Technologies, Santa Clara, CA, USA).
Exponential line broadening of 100 Hz was used throughout. The
specifics of the NMR data acquisition removed the need for
first-order phase corrections. The chemical shifts of the 31P NMR
spectra are reported vs. the 85% H3PO4 chemical shift standard
at 0.00 p.p.m.
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