1,222 research outputs found

    ECT seizure duration: Database information

    Get PDF
    Aim: In this naturalistic study the aim was to examine the impact on seizure duration of stimulus intensity, previous treatments (during the first course of ECT), age, gender, and electrode placement. Method: The database of the ECT Service of the Royal Hobart Hospital was examined for the 15 years ending in 2010. First courses of ECT were identified in which the stimulus intensity was not altered and at least 5 treatments were provided. Seizure duration was determined by cessation of clonic movements. Result: 383 patients (164 males) met selection criteria. A multiple regression analysis revealed that previous treatments, age, gender, and electrode placement had non-significant regression coefficient on the seizure length. The stimulus intensity, however, showed significant regression coefficient (-.267, p <.001), indicating that higher stimulus intensity induced shorter seizure duration. Conclusion: It was suggested that electrode placement and the number of treatments had negligible influence on seizure duration, while high stimulus intensity reduced seizure duration. If fixed high dose ECT is being provided, and there is concern due to the brevity of seizures, rather than taking steps to increase the output of the machine, a modest reduction of dose (perhaps to < 428.4 mC, or < 85% of machine output) may increase seizure duration (German J Psychiatry 2011; 14: 35–39)

    Disaster preparedness and response in older adults: a review and discussion

    Get PDF
    Older adults are disproportionately affected by disasters when they occur, from health, psychological and social perspectives. The needs of older adults are different, complex, and are often overlooked during disaster planning and response. The aim of this study was to review the current literature surrounding the needs of older adults from disaster preparedness and response perspectives

    Vision and its Relationship to Novel Behaviour in St. Lawrence River Greenland Sharks, Somniosus microcephalus

    Get PDF
    Rarely observed Greenland Sharks, Somniosus microcephalus, were recorded at shallow depths by divers employing underwater video in the St. Lawrence River, in association with a seasonal concentration of Capelin (Mallotus villosus) in May-June 2003. We recorded unique proximity-induced display motor patterns in these sharks, which have not been recorded in underwater observations of Arctic Greenland Sharks. Arctic sharks have a high incidence of blindness due to an ocular copepod parasite, Ommatokoita elongata. The absence of parasite-induced blindness in St. Lawrence Greenland Sharks, in contrast to endemic blindness in the Arctic population, may allow sharks in this region to more readily visually recognize the presence of conspecifics and potential prey. Improved visual acuity may therefore allow St. Lawrence River sharks to express a different behavioural repertoire than Arctic sharks, with resulting changes in intra- and inter-specific aggression and predatory behaviour

    Analysis of parametric biological models with non-linear dynamics

    Full text link
    In this paper we present recent results on parametric analysis of biological models. The underlying method is based on the algorithms for computing trajectory sets of hybrid systems with polynomial dynamics. The method is then applied to two case studies of biological systems: one is a cardiac cell model for studying the conditions for cardiac abnormalities, and the second is a model of insect nest-site choice.Comment: In Proceedings HSB 2012, arXiv:1208.315

    Regularity results for the spherically symmetric Einstein-Vlasov system

    Full text link
    The spherically symmetric Einstein-Vlasov system is considered in Schwarzschild coordinates and in maximal-isotropic coordinates. An open problem is the issue of global existence for initial data without size restrictions. The main purpose of the present work is to propose a method of approach for general initial data, which improves the regularity of the terms that need to be estimated compared to previous methods. We prove that global existence holds outside the centre in both these coordinate systems. In the Schwarzschild case we improve the bound on the momentum support obtained in \cite{RRS} for compact initial data. The improvement implies that we can admit non-compact data with both ingoing and outgoing matter. This extends one of the results in \cite{AR1}. In particular our method avoids the difficult task of treating the pointwise matter terms. Furthermore, we show that singularities never form in Schwarzschild time for ingoing matter as long as 3mr.3m\leq r. This removes an additional assumption made in \cite{A1}. Our result in maximal-isotropic coordinates is analogous to the result in \cite{R1}, but our method is different and it improves the regularity of the terms that need to be estimated for proving global existence in general.Comment: 25 pages. To appear in Ann. Henri Poincar\'

    BioDiVinE: A Framework for Parallel Analysis of Biological Models

    Full text link
    In this paper a novel tool BioDiVinEfor parallel analysis of biological models is presented. The tool allows analysis of biological models specified in terms of a set of chemical reactions. Chemical reactions are transformed into a system of multi-affine differential equations. BioDiVinE employs techniques for finite discrete abstraction of the continuous state space. At that level, parallel analysis algorithms based on model checking are provided. In the paper, the key tool features are described and their application is demonstrated by means of a case study

    Hybrid modeling of biological networks: mixing temporal and qualitative biological properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modeling a dynamical biological system is often a difficult task since the a <it>priori </it>unknown parameters of such models are not always directly given by the experiments. Despite the lack of experimental quantitative knowledge, one can see a dynamical biological system as (i) the combined evolution tendencies (increase or decrease) of the biological compound concentrations, and: (ii) the temporal features, such as delays between two concentration peaks (i.e. the times when one of the components completes an increase (resp. decrease) phase and starts a decrease (resp. increase) phase).</p> <p>Results</p> <p>We propose herein a new hybrid modeling framework that follows such biological assumptions. This hybrid approach deals with both a qualitative structure of the system and a quantitative structure. From a theoretical viewpoint, temporal specifications are expressed as equality or inequality constraints between delay parameters, while the qualitative specifications are expressed as an ordered pattern of the concentrations peaks of the components. Using this new hybrid framework, the temporal specifications of a biological system can be obtained from incomplete experimental data. The model may be processed by a hybrid model-checker (e.g. Phaver) which is able to give some new constraints on the delay parameters (e.g. the delay for a given transition is exactly 5 hours after the later peak of a gene product concentration). Furthermore, by using a constraint solver on the previous results, it becomes possible to get the set of parameters settings which are consistent with given specifications. Such a modeling approach is particularly accurate for modeling oscillatory biological behaviors like those observed in the Drosophila circadian cycles. The achieved results concerning the parameters of this oscillatory system formally confirm the several previous studies made by numerical simulations. Moreover, our analysis makes it possible to propose an automatic investigation of the respective impact of per and tim on the circadian cycle.</p> <p>Conclusions</p> <p>A new hybrid technique for an automatic formal analysis of biological systems is developed with a special emphasis on their oscillatory behaviors. It allows the use of incomplete and empirical biological data.</p

    On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system

    Full text link
    In a previous work \cite{An1} matter models such that the energy density ρ0,\rho\geq 0, and the radial- and tangential pressures p0p\geq 0 and q,q, satisfy p+qΩρ,Ω1,p+q\leq\Omega\rho, \Omega\geq 1, were considered in the context of Buchdahl's inequality. It was proved that static shell solutions of the spherically symmetric Einstein equations obey a Buchdahl type inequality whenever the support of the shell, [R0,R1],R0>0,[R_0,R_1], R_0>0, satisfies R1/R0<1/4.R_1/R_0<1/4. Moreover, given a sequence of solutions such that R1/R01,R_1/R_0\to 1, then the limit supremum of 2M/R12M/R_1 was shown to be bounded by ((2Ω+1)21)/(2Ω+1)2.((2\Omega+1)^2-1)/(2\Omega+1)^2. In this paper we show that the hypothesis that R1/R01,R_1/R_0\to 1, can be realized for Vlasov matter, by constructing a sequence of static shells of the spherically symmetric Einstein-Vlasov system with this property. We also prove that for this sequence not only the limit supremum of 2M/R12M/R_1 is bounded, but that the limit is ((2Ω+1)21)/(2Ω+1)2=8/9,((2\Omega+1)^2-1)/(2\Omega+1)^2=8/9, since Ω=1\Omega=1 for Vlasov matter. Thus, static shells of Vlasov matter can have 2M/R12M/R_1 arbitrary close to 8/9,8/9, which is interesting in view of \cite{AR2}, where numerical evidence is presented that 8/9 is an upper bound of 2M/R12M/R_1 of any static solution of the spherically symmetric Einstein-Vlasov system.Comment: 20 pages, Late

    EPICOG-SCH: A brief battery to screen cognitive impact of schizophrenia in stable outpatients

    Get PDF
    Brief batteries in schizophrenia, are needed to screen for the cognitive impact of schizophrenia. We aimed to validate and co-norm the Epidemiological Study of Cognitive Impairment in Schizophrenia (EPICOG-SCH) derived brief cognitive battery. A cross-sectional outpatient evaluation was conducted of six-hundred-seventy-two patients recruited from 234 centers. The brief battery included well-known subtests available worldwide that cover cognitive domains related to functional outcomes: WAIS-III-Letter-Number-Sequencing-LNS, Category Fluency Test-CFT, Logical-Memory Immediate Recall-LM, and Digit-Symbol-Coding-DSC. CGI-SCH Severity and WHO-DAS-S were used to assess clinical severity and functional impairment, respectively. Unit Composite Score (UCS) and functional regression-weighted Composite Scores (FWCS) were obtained; discriminant properties of FWCS to identify patients with different levels of functional disability were analyzed using receiver-operating characteristic (ROC) technique. The battery showed good internal consistency, Cronbach's alpha = 0.78. The differences between cognitive performance across CGI-SCH severity level subscales ranged from 0.5 to 1 SD. Discriminant capacity of the battery in identifying patients with up to moderate disability levels showed fair discriminant accuracy with areas under the curve (AUC) > 0.70, p < 0.0001. An FWCS mean cut-off score ≥ 100 showed likelihood ratios (LR) up to 4.7, with an LR+ of 2.3 and a LR− of 0.5. An FWCS cut-off ≥ 96 provided the best balance between sensitivity (0.74) and specificity (0.62). The EPICOG-SCH proved to be a useful brief tool to screen for the cognitive impact of schizophrenia, and its regression-weighted Composite Score was an efficient complement to clinical interviews for confirming patients' potential functional outcomes and can be useful for monitoring cognition during routine outpatient follow-up visits
    corecore