17 research outputs found

    USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses

    Full text link
    [EN] Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterised by the association of post-lingual progressive hearing loss, progressive visual loss due to retinitis pigmentosa and variable presence of vestibular dysfunction. Because the previously defined transcripts do not account for all USH3 cases, we performed further analysis and revealed the presence of additional exons embedded in longer human and mouse USH3A transcripts and three novel USH3A mutations. Expression of Ush3a transcripts was localised by whole mount in situ hybridisation to cochlear hair cells and spiral ganglion cells. The full length USH3A transcript encodes clarin-1, a four-transmembrane-domain protein, which defines a novel vertebrate-specific family of three paralogues. Limited sequence homology to stargazin, a cerebellar synapse four-transmembrane-domain protein, suggests a role for clarin-1 in hair cell and photoreceptor cell synapses, as well as a common pathophysiological pathway for different Usher syndromes.We are grateful to all patients and their family members who participated in this study. We would also like to thank Ronna Hertzano for the preparation of the mouse inner ear cDNA. This work was funded by an Infrastructure grant of the Israeli Ministry of Science Culture and Sports, the Crown Human Genome Center at The Weizmann Institute of Science, the Alfried Krupp Foundation and by the Finnish Eye and Tissue Bank Foundation, the Finnish Eye Foundation, the Maud Kuistila Memorial Foundation, the Oskar Oflund Foundation, Finnish State grant TYH9235, the European Commission (QLG2-CT-1999-00988) (KB Araham) and by the Foundation Fighting Blindness. JS Beckman holds the, Hermann Mayer professorial chair and D Lancet holds the Ralf and Lois Silver professorial chair.Adato, A.; Vreugde, S.; Joensuu, T.; Avidan, N.; Hamalainen, R.; Belenkiy, O.; Olender, T.... (2002). USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. European Journal of Human Genetics. 10(6):339-350. https://doi.org/10.1038/sj.ejhg.520083133935010

    Counting the Founders: The Matrilineal Genetic Ancestry of the Jewish Diaspora

    Get PDF
    The history of the Jewish Diaspora dates back to the Assyrian and Babylonian conquests in the Levant, followed by complex demographic and migratory trajectories over the ensuing millennia which pose a serious challenge to unraveling population genetic patterns. Here we ask whether phylogenetic analysis, based on highly resolved mitochondrial DNA (mtDNA) phylogenies can discern among maternal ancestries of the Diaspora. Accordingly, 1,142 samples from 14 different non-Ashkenazi Jewish communities were analyzed. A list of complete mtDNA sequences was established for all variants present at high frequency in the communities studied, along with high-resolution genotyping of all samples. Unlike the previously reported pattern observed among Ashkenazi Jews, the numerically major portion of the non-Ashkenazi Jews, currently estimated at 5 million people and comprised of the Moroccan, Iraqi, Iranian and Iberian Exile Jewish communities showed no evidence for a narrow founder effect, which did however characterize the smaller and more remote Belmonte, Indian and the two Caucasus communities. The Indian and Ethiopian Jewish sample sets suggested local female introgression, while mtDNAs in all other communities studied belong to a well-characterized West Eurasian pool of maternal lineages. Absence of sub-Saharan African mtDNA lineages among the North African Jewish communities suggests negligible or low level of admixture with females of the host populations among whom the African haplogroup (Hg) L0-L3 sub-clades variants are common. In contrast, the North African and Iberian Exile Jewish communities show influence of putative Iberian admixture as documented by mtDNA Hg HV0 variants. These findings highlight striking differences in the demographic history of the widespread Jewish Diaspora

    A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity.

    No full text
    Variants of different Class I alcohol dehydrogenase (ADH) genes have been shown to be associated with an effect that is protective against alcoholism. Previous work from our laboratory has shown that the two sites showing the association are in linkage disequilibrium and has identified the ADH1B Arg47His site as causative, with the ADH1C Ile349Val site showing association only because of the disequilibrium. Here, we describe an initial study of the nature of linkage disequilibrium and genetic variation, in population samples from different regions of the world, in a larger segment of the ADH cluster (including the three Class I ADH genes and ADH7). Linkage disequilibrium across ∟40 kb of the Class I ADH cluster is moderate to strong in all population samples that we studied. We observed nominally significant pairwise linkage disequilibrium, in some populations, between the ADH7 site and some Class I ADH sites, at moderate values and at a molecular distance as great as 100 kb. Our data indicate (1) that most ADH-alcoholism association studies have failed to consider many sites in the ADH cluster that may harbor etiologically significant alleles and (2) that the relevance of the various ADH sites will be population dependent. Some individual sites in the Class I ADH cluster show values that are among F st the highest seen among several dozen unlinked sites that were studied in the same subset of populations. The high values can be attributed to the discrepant frequencies of specific alleles in eastern Asia relative to those F st in other regions of the world. These alleles are part of a single haplotype that exists at high (165%) frequency only in the eastern-Asian samples. It seems unlikely that this haplotype, which is rare or unobserved in other populations, reached such high frequency because of random genetic drift alone

    The Matrilineal Ancestry of Ashkenazi Jewry: Portrait of a Recent Founder Event

    Get PDF
    Both the extent and location of the maternal ancestral deme from which the Ashkenazi Jewry arose remain obscure. Here, using complete sequences of the maternally inherited mitochondrial DNA (mtDNA), we show that close to one-half of Ashkenazi Jews, estimated at 8,000,000 people, can be traced back to only 4 women carrying distinct mtDNAs that are virtually absent in other populations, with the important exception of low frequencies among non-Ashkenazi Jews. We conclude that four founding mtDNAs, likely of Near Eastern ancestry, underwent major expansion(s) in Europe within the past millennium
    corecore