192 research outputs found

    Slit regulated gas journal bearing Patent

    Get PDF
    Slit regulated gas journal bearin

    Elastic orifice automatically regulates gas bearings

    Get PDF
    Elastic, pressure-sensitive orifice is used to automatically regulate the rate of gas flow into bearings under varying loads. Formed of a molded elastomer, theses orifices increase the stability of gas bearings

    An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    Full text link
    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE)~\cite{bib:awake} project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook~\cite{bib:Hook} method and has been described in great detail in the work by W. Tendell Hill et. al.~\cite{bib:densitymeter}. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1%1\% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.Comment: 5 pages 9 figure

    Attitude control for spacecraft Patent

    Get PDF
    Attitude control device for space vehicle

    Spin and orbital effects in a 2D electron gas in a random magnetic field

    Full text link
    Using the method of superbosonization we consider a model of a random magnetic field (RMF) acting on both orbital motion and spin of electrons in two dimensions. The method is based on exact integration over one particle degrees of freedom and reduction of the problem to a functional integral over supermatrices Q(r,r)Q({\bf r},{\bf r^{\prime}}). We consider a general case when both the direction of the RMF and the g-factor of the Zeeman splitting are arbitrary. Integrating out fast variations of QQ we come to a standard collisional unitary non-linear σ\sigma-model. The collision term consists of orbital, spin and effective spin-orbital parts. For a particular problem of a fixed direction of RMF, we show that additional soft excitations identified with spin modes should appear. Considering δ\delta % -correlated weak RMF and putting g=2 we find the transport time τtr\tau_{tr} . This time is 2 times smaller than that for spinless particles.Comment: 9 pages, no figure

    Anderson transition of three dimensional phonon modes

    Full text link
    Anderson transition of the phonon modes is studied numerically. The critical exponent for the divergence of the localization length is estimated using the transfer matrix method, and the statistics of the modes is analyzed. The latter is shown to be in excellent agreement with the energy level statistics of the disrodered electron system belonging to the orthogonal universality class.Comment: 2 pages and another page for 3 figures, J. Phys. Soc. Japa

    Comment on ``Critical Behavior in Disordered Quantum Systems Modified by Broken Time--Reversal Symmetry''

    Full text link
    In a recent Letter [Phys. Rev. Lett. 80, 1003 (1998)] Hussein and Pato employed the maximum entropy principle (MEP) in order to derive interpolating ensembles between any pair of universality classes in random matrix theory. They apply their formalism also to the transition from random matrix to Poisson statistics of spectra that is observed for the case of the Anderson-type metal-insulator transition. We point out the problems with the latter procedure.Comment: 1 page in PS, to appear in PRL Sept. 2

    Generation of 10-m-lengthscale plasma columns by resonant and off-resonant laser pulses

    Full text link
    Creating extended, highly homogeneous plasma columns like that required by plasma wakefield accelerators can be a challenge. We study the propagation of ultra-short, TW power ionizing laser pulses in a 10-meter-long rubidium vapor and the plasma columns they create. We perform experiments and numerical simulations for pulses with 780 nm central wavelength, which is resonant with the D2_2 transition from the ground state of rubidium atoms, as well as for pulses with 810 nm central wavelength, some distance from resonances. We measure transmitted energy and transverse width of the pulse and use schlieren imaging to probe the plasma column in the vapor close to the end of the vapor source. We find, that resonant pulses are more confined in a transverse direction by the interaction than off-resonant pulses are and that the plasma channels they create are more sharply bounded. Off-resonant pulses leave a wider layer of partially ionized atoms and thus lose more energy per unit propagation distance. Using experimental data, we estimate the energy required to generate a 20-meter-long plasma column and conclude that resonant pulses are much more suitable for creating a long, homogeneous plasma.Comment: 12 pages, 14 figure

    Magnetic Field Effect for Two Electrons in a Two Dimensional Random Potential

    Full text link
    We study the problem of two particles with Coulomb repulsion in a two-dimensional disordered potential in the presence of a magnetic field. For the regime, when without interaction all states are well localized, it is shown that above a critical excitation energy electron pairs become delocalized by interaction. The transition between the localized and delocalized regimes goes in the same way as the metal-insulator transition at the mobility edge in the three dimensional Anderson model with broken time reversal symmetry.Comment: revtex, 7 pages, 6 figure
    corecore