92 research outputs found

    Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector

    Full text link
    The present work continues a series of the KEDR measurements of the RR value that started in 2010 at the VEPP-4M e+ee^+e^- collider. By combining new data with our previous results in this energy range we measured the values of RudsR_{\text{uds}} and RR at nine center-of-mass energies between 3.08 and 3.72 GeV. The total accuracy is about or better than 2.6%2.6\% at most of energy points with a systematic uncertainty of about 1.9%1.9\%. Together with the previous precise RR measurement at KEDR in the energy range 1.84-3.05 GeV, it constitutes the most detailed high-precision RR measurement near the charmonium production threshold.Comment: arXiv admin note: text overlap with arXiv:1610.02827 and substantial text overlap with arXiv:1510.0266

    Measurement of the ratio of the leptonic widths Γee/Γμμ\Gamma_{ee}/\Gamma_{\mu\mu} for the J/ψJ/\psi meson

    Get PDF
    The ratio of the electron and muon widths of the J/ψJ/\psi meson has been measured using direct J/ψJ/\psi decays in the KEDR experiment at the VEPP-4M electron-positron collider. The result $\Gamma_{ee}(J/\psi)/\Gamma_{\mu\mu}(J/\psi)=1.0022\pm0.0044\pm0.0048\ (0.65\%)isingoodagreementwiththeleptonuniversality.Theexperiencecollectedduringthisanalysiswillbeusedfora is in good agreement with the lepton universality. The experience collected during this analysis will be used for a J/\psi$ lepton width determination with up to 1% accuracy.Comment: 5 pages, 6 figures, 2 table

    Measurement of the branching fraction of J/ψρπJ/\psi\rightarrow\rho\pi at KEDR

    Full text link
    We present the study of the decay J/ψρπJ/\psi \rightarrow \rho \pi. The results are based on of 5.2 million J/ψJ/\psi events collected by the KEDR detector at VEPP-4M collider. The branching fraction is measured to be B(J/ψρπ)=(2.072±0.017±0.056)102\mathcal{B}(J/\psi\rightarrow\rho\pi) = \big(2.072\pm 0.017 \pm 0.056 \big)\cdot 10^{-2} where the first uncertainty is statistical, the second one is systematic. This is the most precise single measurement of this quantity at the moment

    Quantum Rings in Electromagnetic Fields

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordThis chapter is devoted to optical properties of so-called Aharonov-Bohm quantum rings (quantum rings pierced by a magnetic flux resulting in AharonovBohm oscillations of their electronic spectra) in external electromagnetic fields. It studies two problems. The first problem deals with a single-electron AharonovBohm quantum ring pierced by a magnetic flux and subjected to an in-plane (lateral) electric field. We predict magneto-oscillations of the ring electric dipole moment. These oscillations are accompanied by periodic changes in the selection rules for inter-level optical transitions in the ring allowing control of polarization properties of the associated terahertz radiation. The second problem treats a single-mode microcavity with an embedded Aharonov-Bohm quantum ring which is pierced by a magnetic flux and subjected to a lateral electric field. We show that external electric and magnetic fields provide additional means of control of the emission spectrum of the system. In particular, when the magnetic flux through the quantum ring is equal to a half-integer number of the magnetic flux quanta, a small change in the lateral electric field allows for tuning of the energy levels of the quantum ring into resonance with the microcavity mode, thus providing an efficient way to control the quantum ring-microcavity coupling strength. Emission spectra of the system are discussed for several combinations of the applied magnetic and electric fields

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore