42 research outputs found
Marked improvement of cytotoxic effects induced by docetaxel on highly metastatic and androgen-independent prostate cancer cells by downregulating macrophage inhibitory cytokine-1.
BACKGROUND: Overexpression of macrophage inhibitory cytokine-1 (MIC-1) frequently occurs during the progression of prostate cancer (PC) to androgen-independent (AI) and metastatic disease states and is associated with a poor outcome of patients.
METHODS: The gain- and loss-of-function analyses of MIC-1 were performed to establish its implications for aggressive and chemoresistant phenotypes of metastatic and AI PC cells and the benefit of its downregulation for reversing docetaxel resistance.
RESULTS: The results have indicated that an enhanced level of secreted MIC-1 protein in PC3 cells is associated with their acquisition of epithelial-mesenchymal transition features and higher invasive capacity and docetaxel resistance. Importantly, the downregulation of MIC-1 in LNCaP-LN3 and PC3M-LN4 cells significantly decreased their invasive capacity and promoted the antiproliferative, anti-invasive and mitochrondrial- and caspase-dependent apoptotic effects induced by docetaxel. The downregulation of MIC-1 in PC3M-LN4 cells was also effective in promoting the cytotoxic effects induced by docetaxel on the side population (SP) endowed with stem cell-like properties and the non-SP cell fraction from PC3M-LN4 cells.
CONCLUSION: These data suggest that the downregulation of MIC-1 may constitute a potential therapeutic strategy for improving the efficacy of current docetaxel-based chemotherapies, eradicating the total mass of PC cells and thereby preventing disease relapse and the death of PC patients
Expression of tumor-associated glycoprotein-72 (TAG-72) antigen in human prostatic adenocarcinomas.
Tumor-specific antigens are usually defined by monoclonal antibodies (MAbs) and can play critical roles in the diagnosis and therapy of carcinomas. Despite advances in the understanding of the molecular genetics of human prostate carcinomas, therapeutic approaches require that tumor-specific markers, preferably on the cell surface, should be defined. In this study, we examined the expression of an oncofetal antigen tumor-associated glycoprotein-72 (TAG-72) in prostatic adenocarcinomas with a Gleason grade of six or higher. Using a second generation MAb CC49 against TAG-72, immunoreactivity was detected in 88% (29/33) of the prostatic cancer tissues. Occasionally, the benign epithelium showed a very faint immunostaining but in most of the specimens, no reactivity was detected. Positive staining was present in the cytoplasm and the cell membrane of the malignant cells similar to reports on other cancer tissues. A weaker staining pattern of this antigen was seen in poorly differentiated areas. A significant negative correlation (r = -0.36, p \u3c 0.05) was observed between TAG-72 antigen expression and Gleason grade. The TAG-72 antigen expression in prostatic adenocarcinomas may be used as a target for radioimmunotherapy by the multivalent single chain antibody CC49 constructs recently generated by our group
Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer.
The establishment of docetaxel-based chemotherapeutic treatments has improved the survival of castration-resistant prostate cancer (CRPC) patients. However, most patients develop resistance supporting the development of therapy. The current study was undertaken to establish the therapeutic benefit to target hedgehog signaling cascade using GDC-0449 to improve the efficacy of chemotherapeutic drug, docetaxel. Here, we show that the combination of GDC-0449 plus docetaxel inhibited the proliferation of WPE1-NB26 cells and PC3 cells via a blockade of G1 and G2M phases. The combined treatment significantly inhibited PC cell migration in vitro. Moreover, the apoptotic effect induced by GDC-0449 plus docetaxel on PC3 cells was mediated, at least partly, via the mitochondrial membrane depolarization, H2O2 production and caspase cascade activation. Interestingly, GDC-0449 was effective at inhibiting the prostasphere formation, inducing the prostasphere disintegration and apoptotic death of side population (SP) from PC3 cells and reversing the resistance of SP cells to docetaxel. In addition, GDC-0449 plus docetaxel also have shown a greater anti-tumoral growth inhibitory effect on PC3 cell xenografts. These findings support the use of the hedgehog inhibitor GDC-0449, which is currently in clinical trials, for improving the anticarcinogenic efficacy of docetaxel-based chemotherapeutic treatments against locally advanced, AI and metastatic PC
Impaired expression of protein phosphatase 2A subunits enhances metastatic potential of human prostate cancer cells through activation of AKT pathway.
BACKGROUND: Protein phosphatase 2A (PP2A) is a dephosphorylating enzyme, loss of which can contribute to prostate cancer (PCa) pathogenesis. The aim of this study was to analyse the transcriptional and translational expression patterns of individual subunits of the PP2A holoenzyme during PCa progression.
METHODS: Immunohistochemistry (IHC), western blot, and real-time PCR was performed on androgen-dependent (AD) and androgen-independent (AI) PCa cells, and benign and malignant prostate tissues for all the three PP2A (scaffold, regulatory, and catalytic) subunits. Mechanistic and functional studies were performed using various biochemical and cellular techniques.
RESULTS: Through immunohistochemical analysis we observed significantly reduced levels of PP2A-A and -B\u27γ subunits (P
CONCLUSION: We conclude that loss of expression of scaffold and regulatory subunits of PP2A is responsible for its altered function during PCa pathogenesis
Overexpression of PD2 leads to increased tumorigenicity and metastasis in pancreatic ductal adenocarcinoma.
Pancreatic differentiation 2 (PD2), an important subunit of the human PAF complex, was identified after differential screening analysis of 19q13 amplicon, and its overexpression induces oncogenic transformation of NIH3T3 cells, hence raising the possibility of a role for PD2 in tumorigenesis and metastasis. To test this hypothesis, we analyzed here the functional role and clinical significance of PD2 in pancreatic ductal adenocarcinoma (PDAC) and its pathogenesis. Using immunohistochemical analysis, we found that PD2 is detected in the acini but not in the ducts in the normal pancreas. In human PDAC specimens, PD2 was instead primarily detected in the ducts (12/48 patients 25%; p-value \u3c 0.0001), thereby showing that PDAC correlates with increased ductal expression of PD2. Consistently, PD2 expression was increased in telomerase-immortalized human pancreatic ductal cells (HPNE cells) modified to express the HPV16 E6 and E7 proteins, whose respective functions are to block p53 and RB. In addition, ectopic expression of PD2 in PDAC cells (Capan-1 and SW1990) led to increased clonogenicity and migration in vitro, and tumor growth and metastasis in vivo. Interestingly, PD2 overexpression also resulted in enrichment of cancer stem cells (CSCs) and upregulation of oncogenes such as c-Myc and cell cycle progression marker, cyclin D1. Taken together, our results support that PD2 is overexpressed in the ducts of PDAC tissues, and results in tumorigenesis and metastasis via upregulation of oncogenes such as c-Myc and cyclin hence D1 implicating PD2 upregulation in pancreatic oncogenesis with targeted therapeutic potential
Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation.
BACKGROUND: Despite its promise as a highly useful therapy for pancreatic cancer (PC), the addition of external beam radiation therapy to PC treatment has shown varying success in clinical trials. Understanding PC radioresistance and discovery of methods to sensitise PC to radiation will increase patient survival and improve quality of life. In this study, we identified PC radioresistance-associated pathways using global, unbiased techniques.
METHODS: Radioresistant cells were generated by sequential irradiation and recovery, and global genome cDNA microarray analysis was performed to identify differentially expressed genes in radiosensitive and radioresistant cells. Ingenuity pathway analysis was performed to discover cellular pathways and functions associated with differential radioresponse and identify potential small-molecule inhibitors for radiosensitisation. The expression of FDPS, one of the most differentially expressed genes, was determined in human PC tissues by IHC and the impact of its pharmacological inhibition with zoledronic acid (ZOL, Zometa) on radiosensitivity was determined by colony-forming assays. The radiosensitising effect of Zol in vivo was determined using allograft transplantation mouse model.
RESULTS: Microarray analysis indicated that 11 genes (FDPS, ACAT2, AG2, CLDN7, DHCR7, ELFN2, FASN, SC4MOL, SIX6, SLC12A2, and SQLE) were consistently associated with radioresistance in the cell lines, a majority of which are involved in cholesterol biosynthesis. We demonstrated that knockdown of farnesyl diphosphate synthase (FDPS), a branchpoint enzyme of the cholesterol synthesis pathway, radiosensitised PC cells. FDPS was significantly overexpressed in human PC tumour tissues compared with healthy pancreas samples. Also, pharmacologic inhibition of FDPS by ZOL radiosensitised PC cell lines, with a radiation enhancement ratio between 1.26 and 1.5. Further, ZOL treatment resulted in radiosensitisation of PC tumours in an allograft mouse model.
CONCLUSIONS: Unbiased pathway analysis of radioresistance allowed for the discovery of novel pathways associated with resistance to ionising radiation in PC. Specifically, our analysis indicates the importance of the cholesterol synthesis pathway in PC radioresistance. Further, a novel radiosensitiser, ZOL, showed promising results and warrants further study into the universality of these findings in PC, as well as the true potential of this drug as a clinical radiosensitiser
Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy.
BACKGROUND: Pancreatic cancer (PC) is a lethal malignancy primarily driven by activated Kras mutations and characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified their significant role in both benign and malignant human diseases including PC progression and metastasis. However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues from PC patients.
METHODS: In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC progression in (Kras(G12D);Pdx1-Cre (KC)) murine PC model from pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC) by immunohistochemistry and quantitative real-time PCR.
RESULTS: In agreement with previous studies on human PC, we observed a progressive increase in the expression of mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I) mice with advancement of PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the increased expression of inflammatory cytokines IFN-γ (p \u3c 0.0062), CXCL1 (p \u3c 0.00014) and CXCL2 (p \u3c 0.08) in the pancreas of KC mice, which are known to induce mucin expression. Further, we also observed progressive increase in inflammation in pancreas of KC mice from 10 to 50 weeks of age as indicated by the increase in the macrophage infiltration. Overall, this study corroborates with previous human studies that indicated the aberrant overexpression of MUC1, MUC4 and MUC5AC mucins during the progression of PC.
CONCLUSIONS: Our study reinforces the potential utility of the KC murine model for determining the functional role of mucins in PC pathogenesis by crossing KC mice with corresponding mucin knockout mice and evaluating mucin based diagnostic and therapeutic approaches for lethal PC
Efficacy of Wnt-1 monoclonal antibody in sarcoma cells
BACKGROUND: Sarcomas are one of the most refractory diseases among malignant tumors. More effective therapies based on an increased understanding of the molecular biology of sarcomas are needed as current forms of therapy remain inadequate. Recently, it has been reported that Wnt-1/β-catenin signaling inhibits apoptosis in several cancers. In this study, we investigated the efficacy of a monoclonal anti-Wnt-1 antibody in sarcoma cells. METHODS: We treated cell lines A-204, SJSA-1, and fresh primary cultures of lung metastasis of sarcoma with a monoclonal anti-Wnt-1 antibody. Wnt-1 siRNA treatment was carried out in A-204. We assessed cell death using Crystal Violet staining. Apoptosis induction was estimated by flow cytometry analysis (Annexin V and PI staining). Cell signaling changes were determined by western blotting analysis. RESULTS: We detected Wnt-1 expression in all tissue samples and cell lines. Significant apoptosis induction was found in monoclonal anti-Wnt-1 antibody treated cells compared to control monoclonal antibody treated cells (p < 0.02). Similarly, we observed increased apoptosis in Wnt-1 siRNA treated cells. Blockade of Wnt-1 signaling in both experiments was confirmed by analyzing intracellular levels of Dishevelled-3 and of cytosolic β-catenin. Furthermore, the monoclonal anti-Wnt-1 antibody also induced cell death in fresh primary cultures of metastatic sarcoma in which Wnt-1 signaling was active. CONCLUSION: Our results indicate that Wnt-1 blockade by either monoclonal antibody or siRNA induces cell death in sarcoma cells. These data suggest that Wnt-1 may be a novel therapeutic target for the treatment of a subset of sarcoma cells in which Wnt-1/β-catenin signaling is active
Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells.
Previously, we have developed a unique in vitro LNCaP cell model, which includes androgen-dependent (LNCaP-C33), androgen-independent (LNCaP-C81) and an intermediate phenotype (LNCaP-C51) cell lines resembling the stages of prostate cancer progression to hormone independence. This model is advantageous in overcoming the heterogeneity associated with the prostate cancer up to a certain extent. We characterized and compared the gene expression profiles in LNCaP-C33 (androgen-dependent) and LNCaP-C81 (androgen-independent) cells using Affymetrix GeneChip array analyses. Multiple genes were identified exhibiting differential expression during androgen-independent progression. Among the important genes upregulated in androgen-independent cells were PCDH7, TPTE, TSPY, EPHA3, HGF, MET, EGF, TEM8, etc., whereas many candidate tumor suppressor genes (HTATIP2, CDKN2A, CDKN2B, CDKN1C, TP53, TP73, ICAM1, SOCS1/2, SPRY2, PPP2CA, PPP3CA, etc.) were decreased. Pathway prediction analysis identified important gene networks associated with growth-promoting and apoptotic signaling that were perturbed during androgen-independent progression. Further investigation of one of the genes, PPP2CA, which encodes the catalytic subunit of a serine phosphatase PP2A, a potent tumor suppressor, revealed that its expression was decreased in prostate cancer compared to adjacent normal/benign tissue. Furthermore, the downregulated expression of PPP2CA was significantly correlated with tumor stage and Gleason grade. Future studies on the identified differentially expressed genes and signaling pathways may be helpful in understanding the biology of prostate cancer progression and prove useful in developing novel prognostic biomarkers and therapy for androgen-refractory prostate cancer
Pathobiological Implications of the Expression of EGFR, pAkt, NF-κB and MIC-1 in Prostate Cancer Stem Cells and Their Progenies
The progression of prostate cancers (PCs) to locally invasive, androgen-independent and metastatic disease states is generally associated with treatment resistance and disease relapse. The present study was undertaken to establish the possibility of using a combination of specific oncogenic products, including epidermal growth factor receptor (EGFR), pAkt, nuclear factor-kappaB (NF-κB) and macrophage inhibitory cytokine-1 (MIC-1) as biomarkers and therapeutic targets for optimizing the management of patients with localized PC at earlier disease stages. The immunohistochemical and immunofluorescence data have revealed that the expression levels of EGFR, Ser473-pAkt, NF-κB p65 and MIC-1 proteins were significantly enhanced in the same subset of 76 cases of prostatic adenocarcinoma specimens during the disease progression and these biomarkers were expressed in a small subpopulation of CD133+ PC cells and the bulk tumor mass of CD133− PC cells. Importantly, all of these biomarkers were also overexpressed in 80–100% of 30 PC metastasis bone tissue specimens. Moreover, the results have indicated that the EGF-EGFR signaling pathway can provide critical functions for the self-renewal of side population (SP) cells endowed with stem cell-like features from highly invasive WPE1-NB26 cells. Of therapeutic interest, the targeting of EGFR, pAkt, NF-κB or MIC-1 was also effective at suppressing the basal and EGF-promoted prostasphere formation by SP WPE1-NB26 cells, inducing disintegration of SP cell-derived prostaspheres and decreasing the viability of SP and non-SP WPE1-NB26 cell fractions. Also, the targeting of these oncogenic products induced the caspase-dependent apoptosis in chemoresistant SP WPE1-NB26 cells and enhanced their sensibility to the cytotoxic effects induced by docetaxel. These findings suggest that the combined use of EGFR, pAkt, NF-κB and/or MIC-1 may represent promising strategies for improving the accuracy of current diagnostic and prognostic methods and efficacy of treatments of PC patients in considering the disease heterogeneity, thereby preventing PC progression to metastatic and lethal disease states