283 research outputs found

    Quantum cosmological perfect fluid model and its classical analogue

    Get PDF
    The quantization of gravity coupled to a perfect fluid model leads to a Schr\"odinger-like equation, where the matter variable plays the role of time. The wave function can be determined, in the flat case, for an arbitrary barotropic equation of state p=αρp = \alpha\rho; solutions can also be found for the radiative non-flat case. The wave packets are constructed, from which the expectation value for the scale factor is determined. The quantum scenarios reveal a bouncing Universe, free from singularity. We show that such quantum cosmological perfect fluid models admit a universal classical analogue, represented by the addition, to the ordinary classical model, of a repulsive stiff matter fluid. The meaning of the existence of this universal classical analogue is discussed. The quantum cosmological perfect fluid model is, for a flat spatial section, formally equivalent to a free particle in ordinary quantum mechanics, for any value of α\alpha, while the radiative non-flat case is equivalent to the harmonic oscillator. The repulsive fluid needed to reproduce the quantum results is the same in both cases.Comment: Latex file, 13 page

    Characterization of Procoagulant COAT Platelets in Patients with Glanzmann Thrombasthenia.

    Get PDF
    Patients affected by the rare Glanzmann thrombasthenia (GT) suffer from defective or low levels of the platelet-associated glycoprotein (GP) IIb/IIIa, which acts as a fibrinogen receptor, and have therefore an impaired ability to aggregate platelets. Because the procoagulant activity is a dichotomous facet of platelet activation, diverging from the aggregation endpoint, we were interested in characterizing the ability to generate procoagulant platelets in GT patients. Therefore, we investigated, by flow cytometry analysis, platelet functions in three GT patients as well as their ability to generate procoagulant collagen-and-thrombin (COAT) platelets upon combined activation with convulxin-plus-thrombin. In addition, we further characterized intracellular ion fluxes during the procoagulant response, using specific probes to monitor by flow cytometry kinetics of cytosolic calcium, sodium, and potassium ion fluxes. GT patients generated higher percentages of procoagulant COAT platelets compared to healthy donors. Moreover, they were able to mobilize higher levels of cytosolic calcium following convulxin-plus-thrombin activation, which is congruent with the greater procoagulant activity. Further investigations will dissect the role of GPIIb/IIIa outside-in signalling possibly implicated in the regulation of platelet procoagulant activity

    A population density grid for Spain

    Full text link
    This is an author's accepted manuscript of an article published in "International Journal of Geographical Information Science"; Volume 27, Issue 12, 2013; copyright Taylor & Francis; available online at: http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.799283This article describes a high-resolution land cover data set for Spain and its application to dasymetric population mapping (at census tract level). Eventually, this vector layer is transformed into a grid format. The work parallels the effort of the Joint Research Centre (JRC) of the European Commission, in collaboration with Eurostat and the European Environment Agency (EEA), in building a population density grid for the whole of Europe, combining CORINE Land Cover with population data per commune. We solve many of the problems due to the low resolution of CORINE Land Cover, which are especially visible with Spanish data. An accuracy assessment is carried out from a simple aggregation of georeferenced point population data for the region of Madrid. The bottom-up grid constructed in this way is compared to our top-down grid. We show a great improvement over what has been reported from commune data and CORINE Land Cover, but the improvements seem to come entirely from the higher resolution data sets and not from the statistical modeling in the downscaling exercise. This highlights the importance of providing the research community with more detailed land cover data sets, as well as more detailed population data. The dasymetric grid is available free of charge from the authors upon request.The authors acknowledge financial support from the BBVA Foundation-Ivie research programme and the first author also acknowledges support from the Spanish Ministry of Science and Technology, ECO2011-23248 project. Results mentioned, but not shown, are available from the authors upon request. The grid numbers are also available from the authors.Goerlich Sanchis, FJ.; Cantarino Martí, I. (2013). A population density grid for Spain. International Journal of Geographical Information Science. 27(12):1-17. https://doi.org/10.1080/13658816.2013.799283S117271

    Superconductivity with hard-core repulsion: BCS-Bose crossover and s-/d-wave competition

    Full text link
    We consider fermions on a 2D lattice interacting repulsively on the same site and attractively on the nearest neighbor sites. The model is relevant, for instance, to study the competition between antiferromagnetism and superconductivity in a Kondo lattice. We first solve the two-body problem to show that in the dilute and strong coupling limit the s-wave Bose condensed state is always the ground state. We then consider the many-body problem and treat it at mean-field level by solving exactly the usual gap equation. This guarantees that the superconducting wave-function correctly vanishes when the two fermions (with antiparallel spin) sit on the same site. This fact has important consequences on the superconducting state that are somewhat unusual. In particular this implies a radial node-line for the gap function. When a next neighbor hopping t' is present we find that the s-wave state may develop nodes on the Fermi surface.Comment: 10 pages, 9 fig

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio
    corecore