16 research outputs found

    Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory

    Get PDF
    BACKGROUND: Controlled blood-feeding is essential for maintaining laboratory colonies of disease-transmitting mosquitoes and investigating pathogen transmission. We evaluated a low-cost artificial feeding (AF) method, as an alternative to direct human feeding (DHF), commonly used in mosquito laboratories. METHODS: We applied thinly-stretched pieces of polytetrafluoroethylene (PTFE) membranes cut from locally available seal tape (i.e. plumbers tape, commonly used for sealing pipe threads in gasworks or waterworks). Approximately 4 ml of bovine blood was placed on the bottom surfaces of inverted Styrofoam cups and then the PTFE membranes were thinly stretched over the surfaces. The cups were filled with boiled water to keep the blood warm (~37 degrees C), and held over netting cages containing 3-4 day-old inseminated adults of female Aedes aegypti, Anopheles gambiae (s.s.) or Anopheles arabiensis. Blood-feeding success, fecundity and survival of mosquitoes maintained by this system were compared against DHF. RESULTS: Aedes aegypti achieved 100% feeding success on both AF and DHF, and also similar fecundity rates (13.1 +/- 1.7 and 12.8 +/- 1.0 eggs/mosquito respectively; P > 0.05). An. arabiensis had slightly lower feeding success on AF (85.83 +/- 16.28%) than DHF (98.83 +/- 2.29%) though these were not statistically different (P > 0.05), and also comparable fecundity between AF (8.82 +/- 7.02) and DHF (8.02 +/- 5.81). Similarly, for An. gambiae (s.s.), we observed a marginal difference in feeding success between AF (86.00 +/- 10.86%) and DHF (98.92 +/- 2.65%), but similar fecundity by either method. Compared to DHF, mosquitoes fed using AF survived a similar number of days [Hazard Ratios (HR) for Ae. aegypti = 0.99 (0.75-1.34), P > 0.05; An. arabiensis = 0.96 (0.75-1.22), P > 0.05; and An. gambiae (s.s.) = 1.03 (0.79-1.35), P > 0.05]. CONCLUSIONS: Mosquitoes fed via this simple AF method had similar feeding success, fecundity and longevity. The method could potentially be used for laboratory colonization of mosquitoes, where DHF is unfeasible. If improved (e.g. minimizing temperature fluctuations), the approach could possibly also support studies where vectors are artificially infected with blood-borne pathogens

    Evaluation of a push–pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor- and outdoor-biting malaria vectors

    Get PDF
    Background: Push–pull strategies have been proposed as options to complement primary malaria prevention tools, indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs), by targeting particularly early-night biting and outdoor-biting mosquitoes. This study evaluated different configurations of a push–pull system consisting of spatial repellents [transfluthrin-treated eave ribbons (0.25 g/m2 ai)] and odour-baited traps (CO2-baited BG-Malaria traps), against indoor-biting and outdoor-biting malaria vectors inside large semi-field systems. Methods: Two experimental huts were used to evaluate protective efficacy of the spatial repellents (push-only), traps (pull-only) or their combinations (push–pull), relative to controls. Adult volunteers sat outdoors (1830 h–2200 h) catching mosquitoes attempting to bite them (outdoor-biting risk), and then went indoors (2200 h–0630 h) to sleep under bed nets beside which CDC-light traps caught host-seeking mosquitoes (indoor-biting risk). Number of traps and their distance from huts were varied to optimize protection, and 500 laboratory-reared Anopheles arabiensis released nightly inside the semi-field chambers over 122 experimentation nights. Results: Push-pull offered higher protection than traps alone against indoor-biting (83.4% vs. 35.0%) and outdoor-biting (79% vs. 31%), but its advantage over repellents alone was non-existent against indoor-biting (83.4% vs. 81%) and modest for outdoor-biting (79% vs. 63%). Using two traps (1 per hut) offered higher protection than either one trap (0.5 per hut) or four traps (2 per hut). Compared to original distance (5 m from huts), efficacy of push–pull against indoor-biting peaked when traps were 15 m away, while efficacy against outdoor-biting peaked when traps were 30 m away. Conclusion: The best configuration of push–pull comprised transfluthrin-treated eave ribbons plus two traps, each at least 15 m from huts. Efficacy of push–pull was mainly due to the spatial repellent component. Adding odour-baited traps slightly improved personal protection indoors, but excessive trap densities increased exposure near users outdoors. Given the marginal efficacy gains over spatial repellents alone and complexity of push–pull, it may be prudent to promote just spatial repellents alongside existing interventions, e.g. LLINs or non-pyrethroid IRS. However, since both transfluthrin and traps also kill mosquitoes, and because transfluthrin can inhibit blood-feeding, field studies should be done to assess potential community-level benefits that push–pull or its components may offer to users and non-users

    Small-scale field evaluation of transfluthrin-treated eave ribbons and sandals for the control of malaria vectors in rural Tanzania

    Get PDF
    Background: Early-evening and outdoor-biting mosquitoes may compromise the effectiveness of frontline malaria interventions, notably insecticide-treated nets (ITNs). This study aimed to evaluate the efficacy of low-cost insecticide-treated eave ribbons and sandals as supplementary interventions against indoor-biting and outdoor-biting mosquitoes in south-eastern Tanzania, where ITNs are already widely used. Methods: This study was conducted in three villages, with 72 households participating (24 households per village). The households were divided into four study arms and assigned: transfluthrin-treated sandals (TS), transfluthrin-treated eave ribbons (TER), a combination of TER and TS, or experimental controls. Each arm had 18 households, and all households received new ITNs. Mosquitoes were collected using double net traps (to assess outdoor biting), CDC light traps (to assess indoor biting), and Prokopack aspirators (to assess indoor resting). Protection provided by the interventions was evaluated by comparing mosquito densities between the treatment and control arms. Additional tests were done in experimental huts to assess the mortality of wild mosquitoes exposed to the treatments or controls. Results: TERs reduced indoor-biting, indoor-resting and outdoor-biting Anopheles arabiensis by 60%, 73% and 41%, respectively, while TS reduced the densities by 18%, 40% and 42%, respectively. When used together, TER & TS reduced indoor-biting, indoor-resting and outdoor-biting An. arabiensis by 53%, 67% and 57%, respectively. Protection against Anopheles funestus ranged from 42 to 69% with TER and from 57 to 74% with TER & TS combined. Mortality of field-collected mosquitoes exposed to TER, TS or both interventions was 56–78% for An. arabiensis and 47–74% for An. funestus. Conclusion: Transfluthrin-treated eave ribbons and sandals or their combination can offer significant household-level protection against malaria vectors. Their efficacy is magnified by the transfluthrin-induced mortality, which was observed despite the prevailing pyrethroid resistance in the study area. These results suggest that TER and TS could be useful supplementary tools against residual malaria transmission in areas where ITN coverage is high but additional protection is needed against early-evening and outdoor-biting mosquitoes. Further research is needed to validate the performance of these tools in different settings, and assess their long-term effectiveness and feasibility for malaria control

    Field evaluation of the BG-Malaria trap for monitoring malaria vectors in rural Tanzanian villages.

    Get PDF
    BG-Malaria (BGM) trap is a simple adaptation of the widely-used BG-Sentinel trap (BGS). It is proven to be highly effective for trapping the Brazilian malaria vector, Anopheles darlingi, in field conditions, and the African vector, Anopheles arabiensis, under controlled semi-field environments, but has not been field-tested in Africa. Here, we validated the BGM for field sampling of malaria vectors in south-eastern Tanzania. Using a series of Latin-Square experiments conducted nightly (6pm-7am) in rural villages, we compared mosquito catches between BGM, BGS and human landing catches (HLC). We also compared BGMs baited with different attractants (Ifakara-blend, Mbita-blend, BG-Lure and CO2). Lastly, we tested BGMs baited with Ifakara-blend from three odour-dispensing methods (BG-Cartridge, BG-Sachet and Nylon strips). One-tenth of the field-collected female Anopheles gambiae s.l. and Anopheles funestus were dissected to assess parity. BGM captured more An. gambiae s.l. than BGS (p < 0.001), but HLC caught more than either trap (p < 0.001). However, BGM captured more An. funestus than HLC. Proportions of parous An. gambiae s.l. and An. funestus consistently exceeded 50%, with no significant difference between methods. While the dominant species caught by HLC was An. gambiae s.l. (56.0%), followed by Culex spp. (33.1%) and Mansonia spp. (6.0%), the BGM caught mostly Culex (81.6%), followed by An. gambiae s.l. (10.6%) and Mansonia (5.8%). The attractant-baited BGMs were all significantly superior to un-baited controls (p < 0.001), although no difference was found between the specific attractants. The BG-Sachet was the most efficient dispenser for capturing An. gambiae s.l. (14.5(2.75-42.50) mosquitoes/trap/night), followed by BG-Cartridge (7.5(1.75-26.25)). The BGM caught more mosquitoes than BGS in field-settings, but sampled similar species diversity and physiological states as BGS. The physiological states of malaria vectors caught in BGM and BGS were similar to those naturally attempting to bite humans (HLC). The BGM was most efficient when baited with Ifakara blend, dispensed from BG-Sachet. We conclude that though BGM traps have potential for field-sampling of host-seeking African malaria vectors with representative physiological states, both BGM and BGS predominantly caught more culicines than Anopheles, compared to HLC, which caught mostly An. gambiae s.l

    Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory

    No full text
    BACKGROUND: Controlled blood-feeding is essential for maintaining laboratory colonies of disease-transmitting mosquitoes and investigating pathogen transmission. We evaluated a low-cost artificial feeding (AF) method, as an alternative to direct human feeding (DHF), commonly used in mosquito laboratories. METHODS: We applied thinly-stretched pieces of polytetrafluoroethylene (PTFE) membranes cut from locally available seal tape (i.e. plumbers tape, commonly used for sealing pipe threads in gasworks or waterworks). Approximately 4 ml of bovine blood was placed on the bottom surfaces of inverted Styrofoam cups and then the PTFE membranes were thinly stretched over the surfaces. The cups were filled with boiled water to keep the blood warm (~37 degrees C), and held over netting cages containing 3-4 day-old inseminated adults of female Aedes aegypti, Anopheles gambiae (s.s.) or Anopheles arabiensis. Blood-feeding success, fecundity and survival of mosquitoes maintained by this system were compared against DHF. RESULTS: Aedes aegypti achieved 100% feeding success on both AF and DHF, and also similar fecundity rates (13.1 +/- 1.7 and 12.8 +/- 1.0 eggs/mosquito respectively; P > 0.05). An. arabiensis had slightly lower feeding success on AF (85.83 +/- 16.28%) than DHF (98.83 +/- 2.29%) though these were not statistically different (P > 0.05), and also comparable fecundity between AF (8.82 +/- 7.02) and DHF (8.02 +/- 5.81). Similarly, for An. gambiae (s.s.), we observed a marginal difference in feeding success between AF (86.00 +/- 10.86%) and DHF (98.92 +/- 2.65%), but similar fecundity by either method. Compared to DHF, mosquitoes fed using AF survived a similar number of days [Hazard Ratios (HR) for Ae. aegypti = 0.99 (0.75-1.34), P > 0.05; An. arabiensis = 0.96 (0.75-1.22), P > 0.05; and An. gambiae (s.s.) = 1.03 (0.79-1.35), P > 0.05]. CONCLUSIONS: Mosquitoes fed via this simple AF method had similar feeding success, fecundity and longevity. The method could potentially be used for laboratory colonization of mosquitoes, where DHF is unfeasible. If improved (e.g. minimizing temperature fluctuations), the approach could possibly also support studies where vectors are artificially infected with blood-borne pathogens

    Small-scale field evaluation of transfluthrin-treated eave ribbons and sandals for the control of malaria vectors in rural Tanzania

    No full text
    Abstract Background Early-evening and outdoor-biting mosquitoes may compromise the effectiveness of frontline malaria interventions, notably insecticide-treated nets (ITNs). This study aimed to evaluate the efficacy of low-cost insecticide-treated eave ribbons and sandals as supplementary interventions against indoor-biting and outdoor-biting mosquitoes in south-eastern Tanzania, where ITNs are already widely used. Methods This study was conducted in three villages, with 72 households participating (24 households per village). The households were divided into four study arms and assigned: transfluthrin-treated sandals (TS), transfluthrin-treated eave ribbons (TER), a combination of TER and TS, or experimental controls. Each arm had 18 households, and all households received new ITNs. Mosquitoes were collected using double net traps (to assess outdoor biting), CDC light traps (to assess indoor biting), and Prokopack aspirators (to assess indoor resting). Protection provided by the interventions was evaluated by comparing mosquito densities between the treatment and control arms. Additional tests were done in experimental huts to assess the mortality of wild mosquitoes exposed to the treatments or controls. Results TERs reduced indoor-biting, indoor-resting and outdoor-biting Anopheles arabiensis by 60%, 73% and 41%, respectively, while TS reduced the densities by 18%, 40% and 42%, respectively. When used together, TER & TS reduced indoor-biting, indoor-resting and outdoor-biting An. arabiensis by 53%, 67% and 57%, respectively. Protection against Anopheles funestus ranged from 42 to 69% with TER and from 57 to 74% with TER & TS combined. Mortality of field-collected mosquitoes exposed to TER, TS or both interventions was 56–78% for An. arabiensis and 47–74% for An. funestus. Conclusion Transfluthrin-treated eave ribbons and sandals or their combination can offer significant household-level protection against malaria vectors. Their efficacy is magnified by the transfluthrin-induced mortality, which was observed despite the prevailing pyrethroid resistance in the study area. These results suggest that TER and TS could be useful supplementary tools against residual malaria transmission in areas where ITN coverage is high but additional protection is needed against early-evening and outdoor-biting mosquitoes. Further research is needed to validate the performance of these tools in different settings, and assess their long-term effectiveness and feasibility for malaria control

    Schematic diagram of the trap positions and mosquito release points within the semi-field system.

    No full text
    <p>Set ups for experiments 1, 2 and 3, are shown in figure panels A, B and C, respectively. Trap positions are shown in circles, and mosquito release points in triangles. In all experiments, the treatment being tested was rotated between the test locations nightly.</p

    Results of pair-wise post hoc comparison using Tukey’s honestly significance tests (Tukey’s HSD).

    No full text
    <p>Howing similarities and differences between number of mosquitoes caught in traps baited with different lures (Panel A) and number of mosquitoes caught in traps baited with different lures dispensed from different media (Panel B).</p

    Illustration of design and functionality of: (A) BG-Sentinel and (B) BG-Malaria.

    No full text
    <p>IF = Intake funnel; CB = Catch Bag; F = Fan; G = Gauze Cover; T = Tube; RC = Recipient of CO<sub>2</sub>; OB = Odour Bait. Arrows indicate the direction of the airflow. Adapted from Kröckel <i>et al</i>., (2006) and Gama <i>et al</i>., (2013).</p

    Devices used for dispensing mosquito attractants.

    No full text
    <p>Panels A and B show attractants infused inside microcapsules supplied by Biogents Company encased in a plastic sachet (BG-Sachet) and plastic cartridge (BG-Cartridge), respectively. Panel C shows a batch of nylon strips, each soaked in solution of a different constituent of the synthetic attractant [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0186696#pone.0186696.ref033" target="_blank">33</a>].</p
    corecore