95 research outputs found

    Cross-site collaboration on infection prevention and control research—room for improvement? A 7-year comparative study in five European countries

    Get PDF
    Background: The spread of SARS-CoV-2, multidrug-resistant organisms and other healthcare-associated pathogens represents supra-regional challenges for infection prevention and control (IPC) specialists in every European country. To tackle these problems, cross-site research collaboration of IPC specialists is very important. This study assesses the extent and quality of national research collaborations of IPC departments of university hospitals located in Austria, England, France, Germany, and the Netherlands, identifies network gaps, and provides potential solutions. Methods: Joint publications of IPC heads of all university hospitals of the included countries between 1st of June 2013 until 31st of May 2020 were collected by Pubmed/Medline search. Further, two factors, the journal impact factor and the type/position of authorship, were used to calculate the Scientific Collaboration Impact (SCI) for all included sites; nationwide network analysis was performed. Results: In five European countries, 95 sites and 125 responsible leaders for IPC who had been in charge during the study period were identified. Some countries such as Austria have only limited national research cooperations, while the Netherlands has established a gapless network. Most effective collaborating university site of each country were Lille with an SCI of 1146, Rotterdam (408), Berlin (268), Sussex (204), and Vienna/Innsbruck (18). Discussion: The present study indicates major differences and room for improvement in IPC research collaborations within each country and underlines the potential and importance of collaborating in IPC

    Cross-site collaboration on infection prevention and control research—room for improvement? A 7-year comparative study in five European countries

    Get PDF
    Background: The spread of SARS-CoV-2, multidrug-resistant organisms and other healthcare-associated pathogens represents supra-regional challenges for infection prevention and control (IPC) specialists in every European country. To tackle these problems, cross-site research collaboration of IPC specialists is very important. This study assesses the extent and quality of national research collaborations of IPC departments of university hospitals located in Austria, England, France, Germany, and the Netherlands, identifies network gaps, and provides potential solutions. Methods: Joint publications of IPC heads of all university hospitals of the included countries between 1st of June 2013 until 31st of May 2020 were collected by Pubmed/Medline search. Further, two factors, the journal impact factor and the type/position of authorship, were used to calculate the Scientific Collaboration Impact (SCI) for all included sites; nationwide network analysis was performed. Results: In five European countries, 95 sites and 125 responsible leaders for IPC who had been in charge during the study period were identified. Some countries such as Austria have only limited national research cooperations, while the Netherlands has established a gapless network. Most effective collaborating university site of each country were Lille with an SCI of 1146, Rotterdam (408), Berlin (268), Sussex (204), and Vienna/Innsbruck (18). Discussion: The present study indicates major differences and room for improvement in IPC research collaborations within each country and underlines the potential and importance of collaborating in IPC.Projekt DEA

    Elucidating vancomycin-resistant Enterococcus faecium outbreaks:the role of clonal spread and movement of mobile genetic elements

    Get PDF
    Background: Vancomycin-resistant Enterococcus faecium (VREfm) has emerged as a nosocomial pathogen worldwide. The dissemination of VREfm is due to both clonal spread and spread of mobile genetic elements (MGEs) such as transposons.Objectives: We aimed to combine vanB-carrying transposon data with core-genome MLST (cgMLST) typing and epidemiological data to understand the pathways of transmission in nosocomial outbreaks.Methods: Retrospectively, 36 VREfm isolates obtained from 34 patients from seven VREfm outbreak investigations in 2014 were analysed. Isolates were sequenced on a MiSeq and a MinION instrument. De novo assembly was performed in CLC Genomics Workbench and the hybrid assemblies were obtained through Unicycler v0.4.1. Ridom SeqSphere+ was used to extract MLST and cgMLST data. Detailed analysis of each transposon and their integration points was performed using the Artemis Comparison Tool (ACT) and multiple blast analyses.Results: Four different vanB transposons were found among the isolates. cgMLST divided ST80 isolates into three cluster types (CTs); CT16, CT104 and CT106. ST117 isolates were divided into CT24, CT103 and CT105. Within VREfm isolates belonging to CT103, two different vanB transposons were found. In contrast, VREfm isolates belonging to CT104 and CT106 harboured an identical vanB transposon.Conclusions: cgMLST provides a high discriminatory power for the epidemiological analysis of VREfm. However, additional transposon analysis is needed to detect horizontal gene transfer. Combining these two methods allows investigation of both clonal spread as well as the spread of MGEs. This leads to new insights and thereby better understanding of the complex transmission routes in VREfm outbreaks.</p

    The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils.

    Full text link
    Introduction: Continuing inhaled corticosteroid (ICS) use does not benefit all patients with COPD, yet it is difficult to determine which patients may safely sustain ICS withdrawal. Although eosinophil levels can facilitate this decision, better biomarkers could improve personalised treatment decisions. Methods: We performed transcriptional profiling of sputum to explore the molecular biology and compared the predictive value of an unbiased gene signature versus sputum eosinophils for exacerbations after ICS withdrawal in COPD patients. RNA-sequencing data of induced sputum samples from 43 COPD patients were associated with the time to exacerbation after ICS withdrawal. Expression profiles of differentially expressed genes were summarised to create gene signatures. In addition, we built a Bayesian network model to determine coregulatory networks related to the onset of COPD exacerbations after ICS withdrawal. Results: In multivariate analyses, we identified a gene signature (LGALS12, ALOX15, CLC, IL1RL1, CD24, EMR4P) associated with the time to first exacerbation after ICS withdrawal. The addition of this gene signature to a multiple Cox regression model explained more variance of time to exacerbations compared to a model using sputum eosinophils. The gene signature correlated with sputum eosinophil as well as macrophage cell counts. The Bayesian network model identified three coregulatory gene networks as well as sex to be related to an early versus late/nonexacerbation phenotype. Conclusion: We identified a sputum gene expression signature that exhibited a higher predictive value for predicting COPD exacerbations after ICS withdrawal than sputum eosinophilia. Future studies should investigate the utility of this signature, which might enhance personalised ICS treatment in COPD patients

    Latent introduction to the Netherlands of multiple antibiotic resistance including NDM-1 after hospitalisation in Egypt, August 2013

    Get PDF
    We describe the introduction of various multi-drug resistant bacterial strains, including an NDM-1-producing Klebsiella pneumoniae, through a traveller returning from Egypt, where they had been admitted to a private hospital. All family members of the patient were colonised with one or more extended-spectrum beta-lactamase producing strains. These findings emphasise the importance of adherence to isolation precautions for returning patients and suggest the need for inclusion of Enterobacteriaceae in admission screening. We here report of a patient who had been hospitalised in Egypt for appendicitis in July 2013, and was colonised with various multiresistant Enterobacteriaceae including strains producing NDM-1, oxacillinase-48 (OXA-48) and extended spectrum beta-lactamase (ESBL). Explorative screening for multiresistant microorganisms among the patient's family members also yielded several ESBL-producing microorganisms. This report addresses the need for heightened awareness of patients and family members who have recently been exposed to healthcare environments in countries with high levels of antibiotic resistance. Patients repatriated after hospitalisation abroad are a risk for introducing multiresistant microorganisms into hospitals in their home countries. In 2008, New Delhi metallo-beta-lactamase (NDM), which hydrolyses last-line carbapenem antibiotics, has been for the first time described in a Swedish patient returning from India [1]. Most reports on NDM are related to travellers returning from Pakistan and India. However, the global dispersal of NDM is of growing concern [2]. In the past two years, NDM-producing strains have been reported in patients returning from the African continent without obvious links to the Indian subcontinent [3,4]

    Identification of a Novel Genomic Island Associated with vanD-Type Vancomycin Resistance in Six Dutch Vancomycin-Resistant Enterococcus faecium Isolates

    Get PDF
    Genomic comparison of the first six Dutch vanD-type vancomycin-resistant Enterococcus faecium (VRE) isolates with four vanD gene clusters from other enterococcal species and anaerobic gut commensals revealed that the vanD gene cluster was located on a genomic island of variable size. Phylogenetic inferences revealed that the Dutch VRE isolates were genetically not closely related and that genetic variation of the vanD-containing genomic island was not species specific, suggesting that this island is transferred horizontally between enterococci and anaerobic gut commensals.Peer reviewe

    Compliance to Screening Protocols for Multidrug-Resistant Microorganisms at the Emergency Departments of Two Academic Hospitals in the Dutch-German Cross-Border Region

    Get PDF
    Infections caused by multidrug-resistant organisms (MDROs) are associated with prolonged hospitalization and higher risk of mortality. Patients arriving in the hospital via the emergency department (ED) are screened for the presence of MDROs in compliance with the screening protocols in order to apply the correct isolation measures. In the Dutch-German border region, local hospitals apply their own screening protocols which are based upon national screening protocols. The contents of the national and local MDRO screening protocols were compared on vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and carbapenemase-producing and carbapenem-resistant Enterobacteriaceae (CPE/CRE). The practicality of the screening protocols was evaluated by performing an audit. As a result, the content of the MDRO screening protocols differed regarding risk factors for MDRO carriage, swab site, personal protective equipment, and isolation measures. The observations and questionnaires showed that the practicality was sufficient; however, the responsibility was not designated clearly and education regarding the screening protocols was deemed inappropriate. The differences between the MDRO screening protocols complicate patient care in the Dutch-German border region. Arrangements have to be made about the responsibility of the MDRO screening, and improvements are necessary concerning education regarding the MDRO screening protocols

    COPD exacerbations in general practice: variability in oral prednisolone courses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of oral corticosteroids as treatment of COPD exacerbations in primary care is well established and evidence-based. However, the most appropriate dosage regimen has not been determined and remains controversial. Corticosteroid therapy is associated with a number of undesirable side effects, including hyperglycaemias, so differences in prescribing might be relevant. This study examines the differences between GPs in dosage and duration of prednisolone treatment in patients with a COPD exacerbation. It also investigates the number of general practitioners (GPs) who adjust their treatment according to the presence of diabetic co-morbidity.</p> <p>Methods</p> <p>Cross-sectional study among 219 GPs and 25 GPs in training, located in the Northern part of the Netherlands.</p> <p>Results</p> <p>The response rate was 69%. Nearly every GP prescribed a continuous dose of prednisolone 30 mg per day. Among GPs there were substantial differences in treatment duration. GPs prescribed courses of five, seven, ten, or fourteen days. A course of seven days was most common. The duration of treatment depended on exacerbation and disease severity. A course of five days was especially prescribed in case of a less severe exacerbation. In a more severe exacerbation duration of seven to fourteen days was more common. Hardly any GP adjusted treatment to the presence of diabetic co-morbidity.</p> <p>Conclusion</p> <p>Under normal conditions GPs prescribe prednisolone quite uniformly, within the range of the current Dutch guidelines. There is insufficient guidance regarding how to adjust corticosteroid treatment to exacerbation severity, disease severity and the presence of diabetic co-morbidity. Under these circumstances, there is a substantial variation in treatment duration.</p
    • …
    corecore