1,785 research outputs found

    Quenching and Tomography from RHIC to LHC

    Full text link
    We compare fully perturbative and fully nonperturbative pictures of high-pT energy loss calculations to the first results from LHC. While over-suppressed compared to published ALICE data, parameter-free pQCD predictions based on the WHDG energy loss model constrained to RHIC data simultaneously describe well the preliminary CMS hadron suppression, ATLAS charged hadron v2, and ALICE D meson suppression; we also provide for future reference WHDG predictions for B meson RAA. However, energy loss calculations based on AdS/CFT also qualitatively describe well the RHIC pion and non-photonic electron suppression and LHC charged hadron suppression. We propose the double ratio of charm to bottom quark RAA will qualitatively distinguish between these two energy loss pictures.Comment: 4 pages, 3 figures. Proceedings for Quark Matter 201

    Mode tracking issues in structural optimization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76633/1/AIAA-12747-342.pd

    Development of Flutter Constraints for High-fidelity Aerostructural Optimization

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143080/1/6.2017-4455.pd

    Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations

    Get PDF
    This paper presents buckling and free vibration analysis of composite plate/shell structures of various shapes, modulus ratios, span-to-thickness ratios, boundary conditions and lay-up sequences via a novel smoothed quadrilateral flat element. The element is developed by incorporating a strain smoothing technique into a flat shell approach. As a result, the evaluation of membrane, bending and geometric stiffness matrices are based on integration along the boundary of smoothing elements, which leads to accurate numerical solutions even with badly-shaped elements. Numerical examples and comparison with other existing solutions show that the present element is efficient, accurate and free of locking

    A New Triangular Hybrid Displacement Function Element for Static and Free Vibration Analyses of Mindlin-Reissner Plate

    Get PDF
    A new 3-node triangular hybrid displacement function Mindlin- Reissner plate element is developed. Firstly, the modified variational functional of complementary energy for Mindlin-Reissner plate, which is eventually expressed by a so-called displacement function F, is proposed. Secondly, the locking-free formulae of Timoshenko’s beam theory are chosen as the deflection, rotation, and shear strain along each element boundary. Thirdly, seven fundamental analytical solutions of the displacement function F are selected as the trial functions for the assumed resultant fields, so that the assumed resultant fields satisfy all governing equations in advance. Finally, the element stiffness matrix of the new element, denoted by HDF-P3-7β, is derived from the modified principle of complementary energy. Together with the diagonal inertia matrix of the 3-node triangular isoparametric element, the proposed element is also successfully generalized to the free vibration problems. Numerical results show that the proposed element exhibits overall remarkable performance in all benchmark problems, especially in the free vibration analyses

    Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Blood Plasma

    Get PDF
    In this work, the variations in the metabolic profile of blood plasma from lung cancer patients and healthy controls were investigated through NMR-based metabonomics, to assess the potential of this approach for lung cancer screening and diagnosis. PLS-DA modeling of CPMG spectra from plasma, subjected to Monte Carlo Cross Validation, allowed cancer patients to be discriminated from controls with sensitivity and specificity levels of about 90%. Relatively lower HDL and higher VLDL + LDL in the patients' plasma, together with increased lactate and pyruvate and decreased levels of glucose, citrate, formate, acetate, several amino acids (alanine, glutamine, histidine, tyrosine, valine), and methanol, could be detected. These changes were found to be present at initial disease stages and could be related to known cancer biochemical hallmarks, such as enhanced glycolysis, glutaminolysis, and gluconeogenesis, together with suppressed Krebs cycle and reduced lipid catabolism, thus supporting the hypothesis of a systemic metabolic signature for lung cancer. Despite the possible confounding influence of age, smoking habits, and other uncontrolled factors, these results indicate that NMR-based metabonomics of blood plasma can be useful as a screening tool to identify suspicious cases for subsequent, more specific radiological tests, thus contributing to improved disease management.ERDF - Competitive Factors Thematic Operational ProgrammeFCT/PTDC/ QUI/68017/2006FCOMP-01-0124-FEDER-007439SFRH/BD/ 63430/2009National UNESCO Committee - L'Oréal Medals of Honor for Women in Science 200Portuguese National NMR Network - RNRM

    Finite Element Model of Stress Wave Topology in Unidirectional Graphite/Epoxy: Wave Velocities and Flux Deviations

    Full text link
    Until recently, the use of a finite element model (FEM) to simulate stress wave propagation has been limited to solutions where the number of degrees of freedom are kept to a minimum, because of hardware limitations on computer memory and computational speed. With the advent of a numte

    Recent results in relativistic heavy ion collisions: from ``a new state of matter'' to "the perfect fluid"

    Full text link
    Experimental Physics with Relativistic Heavy Ions dates from 1992 when a beam of 197Au of energy greater than 10A GeV/c first became available at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron (SPS) at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac in the late 1970's and early 1980's were at much lower bombarding energies (~ 1 A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the Relativistic Heavy Ion Collider (RHIC) at BNL has produced head-on collisions of two 100A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon center-of-mass energy, sqrt(sNN)=200 GeV, total c.m. energy 200A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: "A new state of matter", by CERN on Feb 10, 2000 and "The perfect fluid", by BNL on April 19, 2005.Comment: 62 pages, 39 figures. Review article published in Reports on Progress in Physics on June 23, 2006. In this published version, mistakes, typographical errors, and citations have been corrected and a subsection has been adde
    corecore