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SUMMARY

The discrete element method typically uses an explicit migakintegration scheme to solve the equations
of motion. However, like all explicit schemes, the schemenfy conditionally stable, with the stability
determined by the size of the time-step. Currently, theeenar comprehensive techniques for estimating
appropriate DEM time-steps when a nonlinear contact intenais used. It is common practice to apply a
large factor of safety to these estimates to ensure stahbilitch unnecessarily increases the computational
cost of these simulations. This work introduces an alt@redtamework for selecting a stable time-step for
nonlinear contact laws, specifically for the Hertz—Mindtiontact law. This approach uses the fact that the
discretised equations of motion take the form of a nonlimeap and can be analysed as such. Using this
framework, we analyse the effects of both system dampingtladhitial relative velocity of collision on
the critical time-step for a Hertz—Mindlin contact eventieen spherical particles. Copyright © 0000 John

Wiley & Sons, Ltd.
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2 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

1. INTRODUCTION

The discrete element method (DEM), introduced by CundallStmack [L], is a powerful tool used

in engineering for the simulation of bulk granular matevialhe particles are described using a
rigid-body formulation coupled with a penalty-based iatgion law. A small amount of overlap
(typically < 5% of the particle radius) is allowed and from this the corregpog contact force is
calculated. The impact phase is described using a combimafi linear and nonlinear springs,
dampers and sliders. The choice of interaction law is detexthbased on material behaviour,
experimentation and experience.

The equations of motion for the interacting particles reduc a system of second-order
differential equations which, in almost all cases, must blexl using a numerical integration
scheme. The most commonly used algorithms are the centierlegice, Position-Verlet and Gear’s
Predictor-Corrector. A detailed comparison of these timtegration methods, in terms of accuracy,
stability and capability, is given by Rougier et &].[The three time-integration schemes mentioned
here are of second-order accuracy and can be constructagl aisiariable or fixed time-stefat
[3]. In this work we will consider only the constant time-stepriiulation in which the scheme is
conditionally stable, like all explicit numerical integi@n techniques, based on the size/af[4].
Choosing too small a time-step leads to excessively longlsition times whereas an overly large
time-step causes numerical instability and an unphysiglaition with the possibility of energy
generation].

The techniques being used at present to estimate suitali# tibke-steps are based on many
assumptionsfd], some of which lack a physical or a numerical justificatiordanost of which

are being applied to systems for which the analysis was nended. To account for the various
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 3

assumptions made in the estimation, large ‘factors of gafee applied to the calculated time-
steps which in many cases leads to the adoption of consesvitie-steps which slow down the
simulations unnecessarily. One of the most commonly usierier for choosing a time-step in
both linear and nonlinear cases is tty@k dependency based on Belytschk@. [This approach
calculates the critical time-step as a function of the masisstéifiness of the particles in the system.
This method makes use of a corollary of Rayleigh'’s theorenetive the stability criterion for the
discretised form of the system’s equations of motion. Thiadhieved using modal decomposition
to reduce the system to a single-degree-of-freedom sySteenmaximum stable time-stept.. is
calculated for this simple system by ensuring that none@éthenvalues of the amplification matrix
have a magnitude exceeding 8].[A similar approach was used i®][in which the maximum
stable time-step is calculated using the minimum particéssnand maximum particle stiffness,
introducing the\/% dependency along with a safety factor. Very few studies ltaresidered a
time-step analysis for nonlinear systems: most advancenirethe area have been developed for
idealised linear systems only. A study by Han et dl0] jwhich does consider a nonlinear systems
analysis involves a linearisation of the nonlinear syst¢maah time-step in which a local limit is
evaluated to determine the critical time-step. The resast the typical\/% dependency, witlt,
the equivalent stiffness, changing at each time increnagmt;n, the effective mass, held constant.
Otsubo et al. 11] investigate the effect of particle mass, contact stiffnasd coordination number
on the critical time-step for a nonlinear contact model. Weatal. [L2] use the theoretical duration
time of contact of 1-D perfectly elastic identical sphefiparticles as an estimate for the critical
time-step. They employ a factor of safety equabkéoto account for damping and other effects.
A similar approach involves choosing the critical timepsés a fraction of the theoretical contact
duration predicted by Hertz contact theoiy].

Another commonly used approach for nonlinear systems, E.g. 15], involves calculating
the value for the spring constant in the normal directign and using this value, together with
the Belytschkoﬁ criterion, an estimate is made of the critical time-step.ahd Andrade 16]

propose a similar method that is based on the relative ootaltimotion of the contacting particles.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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4 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

Although this approach has its merits, it will not be rel@lidr most situations, and a large factor
of safety will always have to be applied to ensure numeritahity. The Belytschko criterion
only applies to linear systems so using the criterion for alinear interaction is incorrect and
cannot be justified. Another approach, discussed in segtigrbased on the Rayleigh wave velocity
propagating through a static particulate system

Overall, the methods being used at present to estimate e time-steps for nonlinear
systems are not very reliable. As most DEM users use a namlguntact law for their analyses, it is
very important to improve upon these techniques to enabldestefficient simulations. The overall
aim of this work is to present an alternative way for selagttable time-steps for DEM simulations
using nonlinear contact laws. For this purpose, we will\dea general framework for analysing the
contact phase of the collision which takes the form of a m@dr map. Using this map, together
with various physical constraints, we will present a schéonestimating the critical time-step.

This article is organised as follows. Sectiéh describes the two most commonly used
methodologies for estimating the critical time-step andhfer motivates the need for a new
methodology. In Sectiof, we will use the example of a two-sphere collision subjea tdertzian
contact law to present our methodologies for selecting a-step. We also examine a simple linear
contact interaction to verify the consistency of our gehfeaanework with previous studies. Section
4 compares our methodology with the currstate of the arand highlights the advantages of a more
reliable time-step formulation. In Secti@Gnwe introduce the idea of dynamical systems theory and

how it can be applied to the system presented in Se@&ibefore concluding in Sectioh

2. CURRENT METHODOLOGIES

2.1. Stability as a function of mass and stiffness

In this methodology, the critical time-step for a DEM sintida is calculated as a function of the
massm and stiffness: of the system’s particles, typically giving a time-step podional to, /7*.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 5

This widely used approach relies on a corollary of Rayleighéorem, the essential details of which
we will give here.

Consider the system of second-order differential equation

Mi+Cq+ Kq=F, 1)

whereM, C andK are the respective mass, damping and stiffness matfitisghe column vector

of external forces and torques, apnd andq are the displacement, velocity and acceleration vectors,
respectively. Belytschko7] uses modal decomposition to reducd {o a system with a single
degree of freedom and further derives the correspondibgisgariterion of the reduced discretised
system using spectral stability analysis. The maximumisttime-stepAt. can be determined by

calculating the eigenvalues of the amplification matrixd &ngiven by

At, — 2 2)

Wmax

for a linear, undamped system, 3, 8]. This is the approach adopted to determine time-steps in
explicit finite element codes such as LS-DYNAZ and ABAQUS/Explicit [L9], even for nonlinear
problems. The inclusion of damping reduces the maximum-8tep in both of these finite element

codes to

ate=—— (VITE ) ®)

Wmax

where( is a damping ratio. Belytschkd] gives the following relation

Wimaz = V Amaz; (4)

where \,,.. is the maximum eigenvalue of/ ' K. Equation §) is derived using an extension
of Rayleigh’s bounding theoren¥], which relates the eigenvalues of any two systems which are
equivalent apart from linear constraints. Applied to aipatate system simulated using DEM, this
approach invariably leads tdt. o« /%

A shortcoming of this analysis is that it requires the modglaions of motion to decouple.
This necessitates the imposition of certain restrictiomgh® damping matrixC’ which are often
unphysical. The method developed il pssumes Rayleigh damping: is defined as a linear

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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6 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

combination of the mass and stiffness matrices. An additiorajor shortcoming is that this analysis
only applies to systems that are linear with respect to tmeigdised coordinates. As most DEM
formulations use a nonlinear contact interaction modehgua linear analysis may yield a highly

inaccurate stability bound.

2.2. Stability using the Rayleigh time-step

The second commonly used methodology is based on the peritigt energy cannot propagate
from a particle beyond its adjacent neighbouring partitiessingle time-step0]. The assumption
is made that all energy transferred across a particulatersys due to Rayleigh waves and the
contributions of distortional and dilational waves, cotleely accounting for around one-third of
radiated energyZl], can therefore be neglected. The critical time-step i€wated using the
theoretical expression for the Rayleigh wave velocity faystem such that
o
At. = 7 g, (5)

wherer is the particle radiusp is the particle density is the shear modulus angl can be

approximated byZ40, 22

B = 0.8766 + 0.163v, (6)

wherev is the Poisson’s ratio of the particle.

Even for this relatively simple approach, there is some guibi about the particle radius to be
used in b) for a polydisperse size distribution. The radius of theltastparticle in the systemyin,
is used by 23, 24] whereas 20, 22] instead use the average particle radiysn (5). For monosized
particles;7 = rmin, but as the degree of polydispersity in the system increasescalculated using
rmin DE€COMes increasingly more conservative than the forre)ah€ludingr.

The Rayleigh time-step criterion has been used for decssles.g. 2], and its continued
popularity implies that its use generally leads to stabheutations. However, this may not be
the case for highly dynamic systems. It is known that timepstshould be reduced when particle
relative velocities are higt2p] but the Rayleigh approach lacks any velocity dependersceaa be

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 7

seen from the form off). Furthermore, the Rayleigh time-step does not considgesy damping.
Thus the critical time-step calculated for the static asdgmay be orders of magnitude larger than
would be required to ensure numerical stability for a higihjmamic, damped case.

Both of these existing methodologies, the two most poputaoreg DEM users, have major
deficiencies for dynamic simulations with damping. Thisusrently addressed by applying large
factors of safety to the critical time-steps calculateshgsither methodology, leading to inefficient
simulations. This motivates the need to develop an alteaty to select time-steps for dynamical

systems with nonlinear contact interactions.

3. TWO-PARTICLE COLLISION

In this section, we will present the general mathematicai@work for a two-sphere collision
which is compatible with any contact model. We consider the-particle collision ofH and H’
with massesn andm/, radii » andr’ and moments of inertid andI’, as shown in Figuré. The
displacement and rotation of the centre of m@ssf body H can be described in the frame located
atG by the coordinateg,, ¢» andgs and the angular rotatiofy, 62 andés and similarlyg;, ¢/, and
¢4 are the coordinates arfd, ¢, and@; are the rotations of the centre of magsof body H'. We
let

q=(91,42,93,01,02,03)", ¢ = (d), 5,45, 07,05,05)",

(j: (Q1,42,Q3791,é2793)T7 q/ = (qllaqév(Iéae/lvo/Qaeé)Ta

be the displacement and velocity vectors of the centre osrobH andH’, respectively. We define

F andF” as the forces generated at impact of each body given by
F:(fFl,fFQ,ng) and F' = (Fl,FQ,F3),

where the subscripts or 3 represent the components of position, velocity and theambriorce
acting in the tangent plane, and the subscitenotes the components acting in the direction
normal to the tangent plane. The direction in which the falue to gravity acts does not affect
the derivation; here it is arbitrarily assumed to act in thheation normal to the tangent plane with

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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8 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

ni

H

n3 k13

C1,3

H/

Figure 1. Simplified 2D view of a collinear impact between tegheres” and H' with radii » andr’

separated in the normal direction by a Hertzian spring wjhing constantk,, and separated in the

tangential directions by linear springs with spring contdd&; and k3, respectively. Linear damping acts

in all directions with constants;, co andcs. The initial relative velocity between the two bodies at aop

is denoted by);.

gravitational acceleratiop. This is the only external force or torque acting &hor H’. Using

Newton’s second law, the equations of motion for sphérend spherdi’ at contact can be found

such that

dg
dt
dgo
dt
dqs
dt
dby
dt
db,
dt
dbs
dt

Copyright © 0000 John Wiley & Sons, Ltd.
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 9

Similarly, the equations of motion for sphet® are given by

w, B, (14)
dd—éf 0, (17)
dd—été - TIF y (18)

3.1. Reducing the dimension of the system

For analysis purposes we are only interested in the dynaimt®ccur during the contact phase. It
is intuitive therefore to consider the system given By~ (18) in terms of a relative frame located
at the contact point of each sphere. We define the positioof the contact poin® of sphereH

relative to then; — ny — ng frame as

ar = (q1p, @2p, g3P)" (19)
where
qp=q —103, @p=q, @p=qg+rd (20)
and where
G1p =1 — 103, dap = do, dap = gz + 701 (21)

Similarly, for spherel’ we have that

q'p=(q1p,q2p q/3P)Ta (22)
where
dip=a1+705 dop=a d3p=0q5—17"0) (23)
and where
Gip=01 4703, qop=ds dzp=0q5—1"0" (24)
Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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10 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

The differential equations for the changes in velocity &t ¢tbntact point” of particle H can be

ascertained by evaluating

dirp _ dirp dgy | dgip dfs 25)
dt dg, dt dbs dt’
dgop  dgop dgo
_ 492 26
dt dgs dt’ (26)
disp _ ddsp dds | dsp dfy 27)

dt  dgs dt do, dt’

Using (7) — (12) together with 21) and @5) — (27) we have that

2

qip *% -5 0 0 Fy 0
Gor | = 0 -1 0 E |+t —g |- (28)
Gsp 0 0 -Li-z Fj 0

and similarly, forH’ we have that

71p % + T[,,Q 0 0 F 0

dsp | = 0 2 0 B+ =4 | (29)
. 0 0o L2 F 0

q 3P m’ + I 3

Now that we have translated the frame of reference to theacobpbint of each sphere, we can
further simplify by considering relative velocity changeshe common point of contact. For this

purpose we let
G=qpr—d1p, =q@prp—dp+ 0" +7), GB=gp—dsp (30)

Using £9), (29) and 30) gives

p ,2 12
i) [A-5-F-% o 0 A
5 | = 0 ~i_1 0 £ |, @
3 0 0 fifﬁ*%*# Fs

which is the change in the relative contact point velocityfand H’. We can further simplify by

/
mm

using the fact thaf = 2ms? andI’ = 2m'r'* and defining the reduced mass= 2 to give

7 —2m 0 0 R
@ |=| o -L o B | (32)
b 7
qs 0 0 —35= F3
Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 11

which is the relative acceleration of the contact point @& tlontacting spheres during the impact

phase. This reduced system will make subsequent analysis simpler.

3.2. 1-D Undamped Linear Contact

To illustrate the usability of this technique, we first calesi a trivial, linear, undamped contact

interaction with forcing in the normal direction only. Thentact forceF’ now takes the form

F=1 kg |- (33)

where k, represents the normal contact spring stiffness. SulistituB83) into (32) gives the

following system of equations

Q1 6 0 0 Q1

s _ k ~

G 0 -k 9 G (34)
3 0 0 0 g3

The maximum stable time-steki. can then be calculated using the methodology in se&iband

At, = 2\/7 . (35)

Substitutingn’ = m into (35), to allow for a direct comparison with the system consideng17],

Al — ﬂ\/kﬁ | (36)

which is identical to the bound reported ih/].

using @), (4) and 34) to give

|2

o~

gives

3.3. Hertz—Mindlin Contact

We now consider a nonlinear contact law and use this to ilitssthe methods we are proposing for
choosing a stable time-step. Specifically we consider thézH®lindlin contact law together with

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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12 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

linear damping as stated below, such that

Fi =g+ ki@ ? i, (37)
Fy = cago + k2q~2%7 (38)
F3 = csqs + ksga® Gs, (39)

wherec;, c3 ande, are the equivalent damping constants in the shear diresciot normal direction
respectively and wherg;, k3 andk, are the equivalent spring constants in the same directions.
Equations 87) — (39) are then used, together witB3), to form the equations of motion for a Hertz—
Mindlin contact interaction. The next step is to discretise system using the commonly used

central difference algorithm.

3.4. Discretised solution

For a detailed description of the Verlet-type central défece algorithm used in this paper, for both
fixed and variable time-steps, the reader is referred®toHor this analysis, we will consider an
interval of time|0, 7] partitioned inton discrete instances of time given by = nA¢. We also

introduce the half instances of time such that the velacdighe half instances are given by

. r; —XT; . T —
,, I In— p J I

G, 1= n n 17 qj. 1 — n+1 rL. (40)
n—3 At nty At

Then, the second derivative term is given by

Gintl = Dn-1

g, =———2 41
aj, Y ; (41)
and the discretised form o8®) can be written as
k1, ? L (42)
= - T9,2X1, — =C
qin, o 120" T1n = o 1911,
G = — 0207 — 21, (43)
m 2
qS = — k3o %333 - LCJ(]} 1 (44)
n Qm n n 2m ’n,fE?

For clarity, we will introduce a new notation to eliminateethalf time instances. For this purpose
we letd, := (jn_% which gives the following system:

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 13

R . 7 1 7 .
Ulpy1 = V1, — A <%k112néxln + %Clvm) ) (45)
x1n+1 =1y + At’U/\anrl) (46)
. . ko 3 c2 .
'U2n+1 = V2 — At %anQ + %UQn ) (47)
Topy1 = Top + Aty g, (48)

R N 7 1 7 .
Ugpt1 = Uz, — At <2m k3ro,2x3, + %030371) ; (49)

T3p+1 = T3pn + At’l)3,,;+1. (50)

The original complex dynamics described By £ (18) has been greatly reduced to the systés) (
— (50). In Section3.6, we will use this equivalent system to determine bounds ertithe-step.
Before this discussion, it is necessary to distinguish betwnumerical stability and accuracy for

this nonlinear problem.

3.5. Stabilityvs. accuracy

While it is well known that the numerical stability of a DEMnsulation depends on the chosen
simulation time-step, so too does the accuracy of the siionlaFor a contact between two Hertzian
spheres using the second-order velocity-Verlet integnetcheme, Hanley and O’Sullivabd] show
that, during a single calculation cycle, the truncatioroein an energy balance is a function of
particle radii, density, shear modulus, Poisson’s ratiouation time-step and the relative velocity
between colliding particles. The magnitude of this truimoaerror generally increases with the last
two of these factors, i.e., by increasing the time-step tative velocity, both of which move a
simulation closer to instability, the truncation errorrieases.

Despite this apparent similarity, there is a clear diffeeehetween the concepts of accuracy and
stability. The accrued error in an energy balance will belkfoa a stable simulation; the signs
of error terms during loading and unloading differ, givingatal error of zero for the perfectly
symmetrical load reversal discussed #§][ Instability is characterised by an uncontrolled, non-
physical growth of energy in a simulatios|[ which may be easily detected using an energy balance.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
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14 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

In Section3.6, we identify two significant analytical curves which may brawin on a plot of
relative velocity against inter-particle overlap. It iDppbsed that a stable time-step should be small
enough so that these two analytical curves are not crossmtkitime-step: at least one time-step is
needed to describe the first phase of the impact betweeal iodtihntact and maximum compression,
and at least one time-step to describe the second phasedmetwaximum compression and
minimum relative velocity. If this condition were not metwould be possible for collision events
to be missed entirely.

It is instructive to consider the analogue of Sectiffor an undamped Hertzian contact. The

Hertzian analogues of Equatior&3f and 34) are

0
F=| kygs (51)
0
and
Q1 0 0 0 Q1
g | =10 —@ 0 g |- (52)
A 0 0 0 s

where thaigé term represents the square root of inter-particle ovetfapis term is taken to be

fixed for the purposes of this illustration, so that this inanalysis can be applied, then

2
At~ | |—= (53)
kaga?

for identical spheres of mass. The smallest possibl&t. arises from choosing the largest overlap.

The maximum overlap between identical Hertzian sphereadifisr, ¢a;nay 1S given as 13, 27)

SN

: (54)

Pmax =T 4 E

. <5x/§7rp 1—v2 2>
V2;

in which the Young’s modulug = 2G(1 + v). Equation §4) can be substituted int®8) to obtain
an expression foA¢. as a function ofvy; if this linear analysis is assumed to be applicable (an
assumption which is not required in Secti®ib). The expression thus obtained is approximately

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 15

0.6t 5, wherety is the duration of a Hertzian contact between identical sggh 3, 27):

tH2%< (55)

4 E

ol

2
5\/§7Tp1—ug>5 r
v

24
Thus, this linear analysis based on Rayleigh’s boundingrtra [7] approximates a critical Hertzian
time-step a little larger than half of the contact duratioa,, 1-2 time-steps are required at a
minimum to describe a two-particle contact. This matcheséyuired minimum number of time-
steps for stability in the analysis presented in Seclidh As the simulation time-step is reduced
more and more below the critical value needed for numeriahility, the accuracy of the simulation

will progressively improveZ6).

3.6. Analysis of the impact phase

In this section, we will present the main results of this warnkl give our motivation for selecting a
time-step in this manner. Our techniques involve analytiegmpact phase, using the framework
derived in Section8.1- 3.4, and deriving meaningful bounds based on the physics ofdhision.

A note on linear stability theory is presented in SectionThis will enable comparison with
the bounds derived in this section without linearisatiorthaf system. It will be demonstrated in
Section5 that linear stability theory is unable to describe thesememnonlinear interactions and
is therefore not a suitable basis for choosing a time-shépgexplains why%3) which is based on a

linear assumption is only presented as an illustrative@ppration.

3.6.1. Normal directionFirst let us consider the normal direction. We define theofeiihg

V= ’02,,;_‘_1 - vén (56)

X = 2Top41 — T2y, (57)

and, using47) and @8), find the two curve§” = 0 andX = 0. Consider firstlyX = 0. Here we are
following the theory given in38], where the point of maximum compression is found by solving

for the instant of zero relative velocity to give

Atk 3

X =00, = 20’
= ’l)Qn = 1 AtCQ .
T T

(58)

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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The curve given byg8) corresponds to the point of maximum compression for a gitenf we

consider the limit ag\¢ approaches zero we have that

Atko S
. “ . 5 L2n?

lim 1, = lim —2—"_ =0, (59)
At—0 At50 1 — Atex

m

which corresponds to the true solution for the curve of maximncompression. The solutieh,, = 0

is expected due to the theory &ff. As we take a smaller and smaller time-step, we approach the
true valuev,,, = 0. We propose that in the first instance of motion (Phase 1)r#jectory should

not cross this curve in one time-step. Considering fiow 0 yields

Vo0 vy, = 20, & (60)
C2

which corresponds to the point of minimum velocity, or whiee testitution phase of the collision
ends. At the point’ = 0, the two bodies go from the point of maximum compression équihint of
minimal relative velocity. We propose that in the secondkinse of motion (Phase 2), the trajectory
should not cross this curve in one time-step. In what follows will give a formal description of

each of the two phases of motion, and determine constrairdteos on the time-stefit.

Phase 1 In the first phase of the motion the system goes from init@htact to maximum

compression. Usingd{’) and @8) subject to the boundary conditions

U/\Qn-‘,-l ~0 = T2n+1 N Top N Af'U’i; ’UAQTL ~ Vg (61)
gives
At ko s
<1 - f’2> _ BT AR . (62)
m m

Equation 62) describes the dynamics of going from the initial instantohtact to the point of
maximum compression. To physically capture the full impalcase it is necessary therefore to
choose a time-step such that the full dynamics of the corsfmegphase can be captured. At the
least, we require one time-step to describe this phasé3a@#én be solved numerically to give an
upper bound on the time-step.

It is noted that increasing,,; requires a smaller value & to satisfy 62) with fixed values of
co, ko andri. It has been known for a long time that time-steps must beedsed when particle
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velocities, or strain rates, are high to maintain stabftitythe Hertzian contact model and to ensure
acceptable accuracy of the simulation, e.g., the defaidtyséactor on time-step in the PFC3D code
is recommended to be reduced ‘especially under rapidlygihgrconditions’ 5]. This research

guantifies the effect aof,; on time-step.

Phase 2 In the second phase the system goes from maximum compmetsithe point at

which the relative velocity is a minimum. Usingq) subject to the following boundary conditions

—k
1;2n+1 ~ —2$2n+1%aﬁ2n ~0 (63)
C2
gives
At 3 Toang1 — T2n  —ko 3
Ty <k2332n2) = — AL = E:CQn—ﬁ-lzv (64)
and thus
3
At, = <_f+> uy (65)
Ton C2

During Phase 23,1 < x2,, SO At, < ;—’; based on §5). To aid in the visualisation of this
methodology, consider the schematic detailed in Figurd a two-sphere collision subject to a
Hertz—Mindlin contact interaction. As derived in the pr@s section, we consider the dynamics in
terms of the relative frame located at the contact pointe&ipheres. The spheres come into contact
with an initial positive relative velocity and leave with agative relative velocity. Our techniques
are concerned with the rich dynamics which occur througttmitontact phase, as shown in Figure
2. For each of the three initial conditions, we see that thatpoi maximum compression and the
point of minimum velocity always occurs at the intersectidrthe trajectories with the theoretical
curves given by%8) and G0), respectively. This allows us to choose a time-step suahwie can

not cross either of the two analytical curves in one timexstde premise of this approach is that the
impact phase for any collision will be fully captured andiMébd to physical, stable simulations. In
the absence of damping, the points of maximum compressidmammum velocity respectively

coincide withv,, = 0 andzxs,, < 0.
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T T I T S
Atko 3
o T2n 2

m

| ’UQATL = T, Aty 4
0.16 ! oy uze

U2y

0.08

-0.08

Figure 2. Relative velocity of a two-sphere collision asrchion of the inter-particle overlap. Three different
incident velocities are shown as contours together witratfaytical expressions for the maximum overlap

curve and minimum velocity curve. The spheres start witméal positive relative velocity.

3.6.2. No slip condition (Shear bounds) the normal direction, the stable time-step identified
ensures that a velocity reversal cannot occur within one-8tep after collision, i.e., the positive
incident velocities on Figur@ cannot become negative within one time-step as this woutailen
crossing the ‘maximum overlap’ curve. A similar shear bousmigproposed, that the tangential
velocity cannot be brought to zero in only one time-stepadtfoss one time-step, the shear force
were sufficient to bring the tangential velocity to zero, wewhd achieve a velocity reversal and
would likely introduce energy artificially into the systernedto instability. Using 45) and ¢@9)

subject to the initial conditions

Uln-‘rl ~0 = Tint1 = Tip = Atvlia Top ~ AtUQia (66)
V31 0 = 3,41 = 23, & Atvg;, V1, = V14, U3y = U35 (67)
gives
7 7
1— ——Ate; — —v9; 7k At? =0 (68)
2m 2m
and
7 7 5
1-— = AﬁCP, — —< Ugi%kgAﬁi =0. (69)
m
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Equations §8) and ©9) cannot be solved analytically but can be solved numeyidalgive upper

bounds on the time-step.

3.6.3. Implementatiofror the numerical analysis that will be presented in Seeti@r®, the critical
time-step is chosen as the minimum 6#), (65), (68) and €9). In practice, a safety factor should

be included to ensure the time-step chosen is not exactheatgper bound.

3.6.4. Undamped-or the undamped system, the compression and restitutiseglof impact are
symmetric. We therefore only need to consider one phaseindlttulation of the critical time-step

in the normal direction. Using@) subject tac, = 0 gives

Atcgz( m) (70)

kg’l)gi 2

These normal bounds have the same form as the bounds usEg.i€pnsidering the undamped

case for the shear bounds, and usi®® @nd 9) subject toc; = ¢3 = 0, gives

Aty = ( 2m ) (71)
Tk1vo;2
and
Aty = < 2m > (72)
Tkava, 2

Comparing (1) and (72) with (70) we see that

Ateg > Atey 3, (73)

providedk; 3 > 2k, which is always the case referring to Sectibi, i.e., the shear bounds dictate
the critical time-step. Tu and Andradé&q similarly found, albeit using a completely different

approach, that the critical time-step is dictated by thgeatial spring constants for an undamped
system.
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4. RESULTS

4.1. Comparison with Rayleigh time-step and Hertz confe t

The Rayleigh time-step criterion (Sectiar?) estimates the critical time-step in terms of the particle
density, shear modulus and Poisson’s ratio. In order to esenpur estimate for the critical time-

step, it is first necessary to rewrite in terms of the same miahfgarameters. For this purpose, we
can relate the particle spring constants, controlling thatact stiffness, to the shear modulus and

Poisson’s ratio as follows:

4GV AGVT
k1,3 - mv k2 - m (74)
wherer = T’J;T is the reduced particle radius. Taking the ratio,
k173 o 3(1 — V)

At v = 0.5, k1 3 = ko; otherwisek; 3 > ks for physically realistic values af. For the undamped

system, using/0) and (/4) we get

2

=2\ 2

Ateg = U2i_% (1 - V)2/5 <”\—;¥3 ) (F_Gp) ° (76)
7

for the normal bounds. Considering the undamped case fashtbar bounds, and usingd) and

(69) together with {4) , gives

.3../3 % 2

. % 277'/) 5
Ateq s =0, 5 (2 — )5 | £ L 77
1,3 V24 ( V) \/7—2 21 ( )

Recalling the Rayleigh time-step criterion from Sectib® we have
T T'min 14

Atp = ———"—— /5, 78
0.8766 + 0.163v | G (78)

taking the more conservative form of the criterion based.gnrather tharr. If »r = v/, At. < 7 in
(76) and (77): the same proportionality to radius as if8].

The duration of a Hertzian contact between identical sghefe was presented above &sb).
Comparingty and (76), both equations have the same dependence, pnG, r andwv.;. In fact,
At for the undamped system is exactly halftgf. the expected result considering the origin of
(76) in Section3.6.
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4.2. Numerics

In this section, we will numerically analyse how the crititime-step calculated in Sectidghis
affected by the system parameters. The purpose of this &mamgsight into how damping, together
with the initial relative velocity of collision, affects éhcritical time-step. For the undamped case,
we will compare the results with the time-step predictedigshe Rayleigh approacii§). For the
numerical analysis in this section, we consider variantsvofsets of parameters, as detailed in the

figure captions.

4.2.1. Undamped-igure3 shows the variation of critical time-step with initial rélee velocity,v;,

for different contours of shear modulus when damping istimacAt low velocities, approaching
guasi-static conditiong)¢. is greater than the Rayleigh time-step and thus less coatservA¢,
decreases with increasing. This is consistent with the recommendation within the caruoial
PFC3D code Z5] to reduce the default value of the safety factor by whichéktmated critical
time-step is multiplied when the Hertzian contact modekisduunder rapidly changing conditions.
The dashed lines in Figui&and all subsequent figures indicate the corresponding Rayiiene-
steps given by18). In Figure3, these are constant with respectifoThis is a major shortcoming
of the Rayleigh time-step methodology as it fails to captheeknown dependence of time-step on
velocity. For a different set of input parameters corresfiog to glass ballotini (beads), Figure
4 shows that for low velocityAt. is again greater than the Rayleigh time-step and thus less
conservative. However, as the relative velocity increages becomes lower than the Rayleigh
prediction.

In Figures5 and6, we investigate the effect of particle size .. For this purpose, the ratio
% is varied between 0 and In(> m’). In both figures At. approaches zero &% approaches
zero, consistent with analytical and numerical studies,, §L.1]. As for the monosized particles,
increasingv; has the effect of decreasinlyt.. For the industrial powder, the Rayleigh time-step
is between a relative velocity of 0.1 m'sand 1 ms!, whereas it is closest to 1 m'sfor the glass
ballotini in Figure6. At higher velocities, e.g., during shot peening using glasads as an abrasive
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s

30 1

(_ 5G
At, 15G

0 0.02 0.04 0.06 0.08 , 01

V; ms
Figure 3. Critical time-stepAt. (solid line), against initial relative velocity;,;. Parameters are based on
those in P9] for an unspecified representative industrial powder inrautited mixer:G = 300 MPa,
v =0.25, p=1000kgm ™3, r = v = 1.5mm. The dashed line shows the corresponding Rayleigh critical

time-step.

75 0.1G .

Figure 4. Critical time-stepit., against initial relative velocity;; using parameters for large glass ballotini

from [30]: G = 17 GPa, v = 0.22, p = 2530 kgm_?’, r =10.1mm, s = 10.3 mm.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)

Prepared usingimeauth.cls DOI: 10.1002/nme



ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 23

medium, choosing the Rayleigh time-step is likely to leadhgiability. Conversely, the Rayleigh

time-step would be unnecessarily conservative for guasiessimulations.

us

14- ¢ __-_-_--_E

Atc —"‘

/ I
v; =1ms!

v; = 10 ms™1

O 1 1 1
0 0.25 05 0.75 1

m

Figure 5. Critical time-stepAt., against particle mass rati%', using the values of7, v and p for an

industrial powder from Figur& andm + m’ = 0.0001 kg.

0 0.25 0.5 ,» 75 1

m

Figure 6. Critical time-step)¢., against particle mass rati%, using the values off, v andp for glass

ballotini from Figure4 andm + m’ = 0.0001 kg.
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In Figures7 and 8, we investigate the effect of particle size &, by increasing the system
mass,m + m’, by a factor of 100 compared to those in Figusesnd6. The greater system mass,
or particle radii considering the fixed density, has theatffé increasingAt.., consistent with prior
studies L1]. However, the ratios between the Rayleigh time-step aadithe-steps calculated using

this approach are unchanged.

0 0.25 05,, 0.75 1

m

Figure 7. Critical time-stepAt., against particle mass ratig

o, for an industrial powderZ9] with

G = 300 MPa, v = 0.25, p = 1000 kgm 3, m 4+ m’ = 0.01 kg.

4.2.2. DampedThe inclusion of damping can have a very significant effecttlom time-step.
Invariably, the inclusion of damping necessitates a sméhae-step to ensure stability compared
to the equivalent undamped case. This is an important ceraidn as many practical simulations
contain some mechanical damping to dissipate energy. €guand 10 are for the same cases
as in Sectiont.2.1 a typical industrial powder and large glass beads, respdectHowever, the
contours now show different values of the damping constaats- c; = c3. In both cases, for
sufficiently small damping and low relative velocitit. is less conservative than the Rayleigh
time-step. However, increasing beyond a certain point results in a more conservative estima
of At. than predicted by Rayleigh. The Rayleigh time-step remeamstant with respect to both
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s

14
At,

0
0 0.25 05 0.75 1

m
m

Figure 8. Critical time-step)t., against particle mass ratié’i, for glass ballotini O] with G = 17 GPa,

v=0.22,p=2530kgm~3, m+m’ = 0.01kg.

co andwv;, making its use as a stable bound highly unreliable wheniderisg damped, dynamic
interactions.

This result, that the inclusion of damping reduces theaaittime-step, is in agreement with
[31]. In that paper, a Hertz—Mindlin contact model is adopted @#r@ damping term originates from
the presence of liquid bridges between the particles. Usisgmi-empirical approach, Washino et
al. [31] find that the time-step must decrease to maintain stabilitly increasing liquid viscosity,
i.e., anincreasing degree of damping. Damping also redii¢em finite element codes, as seen by
comparing 2) and Q).

In Figuresll and12, we investigate the effect of particle size An. by decreasing the ratig;'
for varying contours ot,. In Figurell, At. is more conservative than the Rayleigh time-step for
all ¢, due to the interaction of system parameters. However, iarEitR2, At. is less conservative
than the Rayleigh time-step for sufficiently low vaIues:p’andTT'.
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s
2 =0kgs™!

24 | €—— -

0 1 1
012 Vs 024 ms_l

Figure 9. Critical time-stepit., against initial relative velocity;, using the parameters from Figuevith

damping constants of 0, 0.1 and 0.5k§andc; = co = cs.

us
c; =0kgs™!

30 T

At, ¢y =100 kgs!

co =200 kgs™!

15

Y

0 1 1 1
0 0.25 0.5 0.75 1

Vi ms!

Figure 10. Critical time-stepAt¢., against initial relative velocityy;, for the large glass beads with the

parameters used for Figufeandc; = c¢o = ¢3 values of 0, 100 and 200 kg's

5. ANOTE ON LINEAR STABILITY

In this section, we will show that linearisation alone canhe applied to aid in the analytical
development of time-step criteria for nonlinear systentge $ystem given by46) — (50) can be
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O 1 1 1
0 0.25 0.5 0.75 1

E1RY

Figure 11. Critical time-stepAt., against particle mass ratié}%, for an industrial powder with the

parameters used for Figutev; =1m standc; = ¢y = c3 values of 0, 1 and 5 kg"s

0 1 1 1
0 0.25 0.5 ,» 0.75 1

m

Figure 12. Critical time-step)t., against particle mass rati%’, for glass ballotini with the parameters

used for Figures, v; = 1ms?tandc; = ca = ¢3 values of 0, 5 and 50 kgs

viewed as a discrete nonlinear map. It is therefore intaitotvemploy dynamical systems theory to
complement the time-step stability analysis.
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5.1. Fixed Points

Fixed points of adiscrete dynamical systemr a map can be viewed as a static value of the

dynamical systerar constant solutions to the discrete equations. Condiggrdimensional map

Tpp1 = f(zn), (79)
wherez = (z4, ... ,a:j)T andf(z) = (f1,..., fj)T is a function of the system variahte such that
L1n41 =h (xlna"'axjn) (80)

:Cjn+1 :fj (l‘ln,...,lﬂjn) (81)

Any fixed pointz* = (z1*, .. .a:j*)T of the map(80) — (81) must satisfy the equations

file™,. .. =a1", -, fi(@",.o o) = a7 (82)
Solutions of 82) give us the location of the fixed points and, potentiallgpadome insight into the
stability characteristics of the nonlinear system.
5.2. Stability of the linearised systems

In order to ascertain the linear stability characterist€sa fixed point of a nonlinear map, it is
necessary to consider a linearisation of the map in the beitjood of the fixed point. This can be
achieved by computing the Jacobid(z*) of the nonlinear map evaluated at the fixed point, and

thus we end up with a linear map given by
Tpy1 = J(27)Tn, (83)

that is valid in the vicinity ofc*. For the map&0) — (81) we have the linear system

Ting1 g,—ﬁ(xl*,...,xj*) %(xl*,...,xj*) L1,
=~ , (84)
Tjniq %(xl*,...xj*) %(xl*,...,xj*) T,
which is linearised about the fixed poirt = (z1*, .. .:cj*)T.
Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)

Prepared usingimeauth.cls DOI: 10.1002/nme



ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 29

The linear stability of the fixed point is determined by thduma of the eigenvalues; of
the Jacobian evaluated at the fixed point. In general, a fixdok i5 asymptotically stable if all
eigenvalues are contained within the unit circle of the clempplane, i.e., such thdt;| < 1;

otherwise the fixed point is unstable.

5.3. Reduced dynamics

If we consider the reduced system and the dynamics in thealalinection only, the map given by

(45) — (50) reduces to
Opt1 = Op — At (2xng + CTQ@n) ) (85)
m m
Tp+1 = Tp + A"'{)n-i-l- (86)

Using 82), we find that the only fixed point for the reduced map(is, z*)T = (O,O)T. The
linearised system about, z) = (0,0)” can then be found, using4), and is given by

~ 5 At N
Un+1 1— 2= 0 Un

= " : (87)
Tt At — % 1 Tn

The Jacobian of the linearised system, evaluated at the ficied], has the eigenvalues

C2 At

=1, =1 - (88)
with corresponding eigenvectors
0 > Cz—??b
v = , VU2 = c2it . (89)
1 1

Since one of the eigenvalues is equal fave have that the fixed point in this setup is degenerate
and thus the local dynamics are given by one (stable or ue$tatanifold and a centre manifold.
Furthermore, as mentioned above, the stability of the fixaatpequires that the second manifold is
stable and thu&. has to be contained within the unit circle of the complex plaauch thaf\,| < 1.

Applying this criterion to\, given in 88) gives

2m
0< At< —. (90)
C2
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This analysis only holds, however, for the flow in the viginif the fixed point. For a sufficiently
small initial relative velocity, this would be an approgeadound on the time-step. This bound is
independent of the spring force, and is more than twice theev@alculated ing5), derived for the
unloading from maximum compression to separation (Phase 2)

Linearisation is the most commonly used tool for analyshggtability of nonlinear systems in
engineering. This analysis clearly shows that one shoulathecareful when linearising and using
that as an approximation of what happens in the systems fittieer motivates the need for a new
method for selecting stable time steps for nonlinear systéio really understand what happens
locally to the fixed point would require further analysis die$ outside the scope of the present

analysis.

6. DISCUSSION AND CONCLUSIONS

An alternative technique has been proposed to determineermcah simulation stability for a
nonlinear contact interaction including damping, basedpalysing the dynamics of the impact
phase. This method is based on a general framework whichssesaihe contact phase in terms of
the discretised contact point equations of motion whicimfarlinear or nonlinear map (depending
on the nature of the contact law). This general frameworloisatible for collisions of spherical
particles subject to a linear or nonlinear contact law.

We performed a numerical investigation of how the critidalg-step varies as a function of the
system damping together with the initial relative veloafycollision. This analysis is the first of its
kind and provides an intuitive, easy-to-use technique fgjirreers who want to ensure stable, but
not overly conservative, numerical simulations of dynasyistems with damping. The analytical
and numerical results presented here have also confirmetpseobservations in the literature
showing how the numerics become less stable with incregsteins damping and relative collision
velocity.

This analysis is only applicable to two contacting sphératicles, as is the case for the
commonly used Rayleigh time-step approach. Neverthetestdl| provides a very useful guide for
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how to choose a stable time-step for dynamic systems wittpdamFurthermore, the framework
presented here is general so can be extended, e.g., to imnatgm close-packing of spherical
particles, a configuration more representative of certdiMuse cases. Pending such a study, it is

important to note thaf\¢. should be reduced for multiple inter-particle contactcddly, Otsubo

2
3

et al. [L1] discovered the relationshift. oc Cy oy

for a specific polydisperse packing of spheres
with a Hertz—Mindlin contact model wher@y maxis the maximum particle coordination number.

A basic introduction to dynamical systems theory was giveth @ésed to determine the stability
of a simplified version of the model system for low-velocitllsion cases. While the results are
only partial, it shows that linearisation alone does notgig all the answers to the stability of the
full system. However, the proportionality of the stabiligund to% obtained further confirms the
validity of the bound for the unloading phase of the intertiple impact. The extension of this work
has been left to future research.

In practice, a safety factor is included when using the Rggléime-step. We propose using
a similar safety factor for the implementation of our caficime-step. The safety factor can be
viewed as the approximate number of steps required to aetyidescribe the individual segments
of the impact phase. From the numerical results, we havedfthat our critical time-step exceeds
the Rayleigh time-step for a large region of parameter spacgiably more important, however, is

the fact that we have highlighted the regions in parametacesgvhere a much more conservative

time-step is required. This further emphasizes the shitegs of the Rayleigh time-step approach.
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