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SUMMARY

The discrete element method typically uses an explicit numerical integration scheme to solve the equations

of motion. However, like all explicit schemes, the scheme isonly conditionally stable, with the stability

determined by the size of the time-step. Currently, there are no comprehensive techniques for estimating

appropriate DEM time-steps when a nonlinear contact interaction is used. It is common practice to apply a

large factor of safety to these estimates to ensure stability which unnecessarily increases the computational

cost of these simulations. This work introduces an alternative framework for selecting a stable time-step for

nonlinear contact laws, specifically for the Hertz–Mindlincontact law. This approach uses the fact that the

discretised equations of motion take the form of a nonlinearmap and can be analysed as such. Using this

framework, we analyse the effects of both system damping andthe initial relative velocity of collision on

the critical time-step for a Hertz–Mindlin contact event between spherical particles. Copyright © 0000 John

Wiley & Sons, Ltd.
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2 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

1. INTRODUCTION

The discrete element method (DEM), introduced by Cundall and Strack [1], is a powerful tool used

in engineering for the simulation of bulk granular materials. The particles are described using a

rigid-body formulation coupled with a penalty-based interaction law. A small amount of overlap

(typically < 5% of the particle radius) is allowed and from this the corresponding contact force is

calculated. The impact phase is described using a combination of linear and nonlinear springs,

dampers and sliders. The choice of interaction law is determined based on material behaviour,

experimentation and experience.

The equations of motion for the interacting particles reduce to a system of second-order

differential equations which, in almost all cases, must be solved using a numerical integration

scheme. The most commonly used algorithms are the central difference, Position-Verlet and Gear’s

Predictor-Corrector. A detailed comparison of these time-integration methods, in terms of accuracy,

stability and capability, is given by Rougier et al. [2]. The three time-integration schemes mentioned

here are of second-order accuracy and can be constructed using a variable or fixed time-step∆t

[3]. In this work we will consider only the constant time-step formulation in which the scheme is

conditionally stable, like all explicit numerical integration techniques, based on the size of∆t [4].

Choosing too small a time-step leads to excessively long simulation times whereas an overly large

time-step causes numerical instability and an unphysical solution with the possibility of energy

generation [5].

The techniques being used at present to estimate suitable DEM time-steps are based on many

assumptions [6], some of which lack a physical or a numerical justification and most of which

are being applied to systems for which the analysis was not intended. To account for the various

∗Correspondence to: School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh,

Edinburgh EH9 3JL, UK. E-mail: shane.burns111@gmail.com

Contract/grant sponsor: EPSRC; contract/grant number: EP/N004477/1
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 3

assumptions made in the estimation, large ‘factors of safety’ are applied to the calculated time-

steps which in many cases leads to the adoption of conservative time-steps which slow down the

simulations unnecessarily. One of the most commonly used criteria for choosing a time-step in

both linear and nonlinear cases is the
√

m
k dependency based on Belytschko [7]. This approach

calculates the critical time-step as a function of the mass and stiffness of the particles in the system.

This method makes use of a corollary of Rayleigh’s theorem toderive the stability criterion for the

discretised form of the system’s equations of motion. This is achieved using modal decomposition

to reduce the system to a single-degree-of-freedom system.The maximum stable time-step∆tc is

calculated for this simple system by ensuring that none of the eigenvalues of the amplification matrix

have a magnitude exceeding 1 [8]. A similar approach was used in [9] in which the maximum

stable time-step is calculated using the minimum particle mass and maximum particle stiffness,

introducing the
√

m
k dependency along with a safety factor. Very few studies haveconsidered a

time-step analysis for nonlinear systems: most advancements in the area have been developed for

idealised linear systems only. A study by Han et al. [10] which does consider a nonlinear systems

analysis involves a linearisation of the nonlinear system at each time-step in which a local limit is

evaluated to determine the critical time-step. The result has the typical
√

m
k dependency, withk,

the equivalent stiffness, changing at each time increment,andm, the effective mass, held constant.

Otsubo et al. [11] investigate the effect of particle mass, contact stiffness and coordination number

on the critical time-step for a nonlinear contact model. Wada et al. [12] use the theoretical duration

time of contact of 1-D perfectly elastic identical spherical particles as an estimate for the critical

time-step. They employ a factor of safety equal to20 to account for damping and other effects.

A similar approach involves choosing the critical time-step as a fraction of the theoretical contact

duration predicted by Hertz contact theory [13].

Another commonly used approach for nonlinear systems, e.g., [14, 15], involves calculating

the value for the spring constant in the normal directionkN , and using this value, together with

the Belytschko
√

m
k criterion, an estimate is made of the critical time-step. Tuand Andrade [16]

propose a similar method that is based on the relative rotational motion of the contacting particles.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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4 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

Although this approach has its merits, it will not be reliable for most situations, and a large factor

of safety will always have to be applied to ensure numerical stability. The Belytschko criterion

only applies to linear systems so using the criterion for a nonlinear interaction is incorrect and

cannot be justified. Another approach, discussed in section2, is based on the Rayleigh wave velocity

propagating through a static particulate system

Overall, the methods being used at present to estimate appropriate time-steps for nonlinear

systems are not very reliable. As most DEM users use a nonlinear contact law for their analyses, it is

very important to improve upon these techniques to enable stable, efficient simulations. The overall

aim of this work is to present an alternative way for selecting stable time-steps for DEM simulations

using nonlinear contact laws. For this purpose, we will derive a general framework for analysing the

contact phase of the collision which takes the form of a nonlinear map. Using this map, together

with various physical constraints, we will present a schemefor estimating the critical time-step.

This article is organised as follows. Section2 describes the two most commonly used

methodologies for estimating the critical time-step and further motivates the need for a new

methodology. In Section3, we will use the example of a two-sphere collision subject toa Hertzian

contact law to present our methodologies for selecting a time-step. We also examine a simple linear

contact interaction to verify the consistency of our general framework with previous studies. Section

4compares our methodology with the currentstate of the artand highlights the advantages of a more

reliable time-step formulation. In Section5, we introduce the idea of dynamical systems theory and

how it can be applied to the system presented in Section3, before concluding in Section6.

2. CURRENT METHODOLOGIES

2.1. Stability as a function of mass and stiffness

In this methodology, the critical time-step for a DEM simulation is calculated as a function of the

massm and stiffnessk of the system’s particles, typically giving a time-step proportional to
√

m
k .

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 5

This widely used approach relies on a corollary of Rayleigh’s theorem, the essential details of which

we will give here.

Consider the system of second-order differential equations

Mq̈ + Cq̇ +Kq = F, (1)

whereM , C andK are the respective mass, damping and stiffness matrices,F is the column vector

of external forces and torques, andq, q̇ andq̈ are the displacement, velocity and acceleration vectors,

respectively. Belytschko [7] uses modal decomposition to reduce (1) to a system with a single

degree of freedom and further derives the corresponding stability criterion of the reduced discretised

system using spectral stability analysis. The maximum stable time-step∆tc can be determined by

calculating the eigenvalues of the amplification matrix, and is given by

∆tc =
2

ωmax
(2)

for a linear, undamped system [17, 3, 8]. This is the approach adopted to determine time-steps in

explicit finite element codes such as LS-DYNA [18] and ABAQUS/Explicit [19], even for nonlinear

problems. The inclusion of damping reduces the maximum time-step in both of these finite element

codes to

∆tc =
2

ωmax

(

√

1 + ζ2 − ζ
)

(3)

whereζ is a damping ratio. Belytschko [7] gives the following relation

ωmax =
√

λmax, (4)

whereλmax is the maximum eigenvalue ofM−1K. Equation (4) is derived using an extension

of Rayleigh’s bounding theorem [7], which relates the eigenvalues of any two systems which are

equivalent apart from linear constraints. Applied to a particulate system simulated using DEM, this

approach invariably leads to∆tc ∝
√

m
k .

A shortcoming of this analysis is that it requires the modal equations of motion to decouple.

This necessitates the imposition of certain restrictions on the damping matrixC which are often

unphysical. The method developed in [7] assumes Rayleigh damping:C is defined as a linear

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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6 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

combination of the mass and stiffness matrices. An additional major shortcoming is that this analysis

only applies to systems that are linear with respect to the generalised coordinates. As most DEM

formulations use a nonlinear contact interaction model, using a linear analysis may yield a highly

inaccurate stability bound.

2.2. Stability using the Rayleigh time-step

The second commonly used methodology is based on the principle that energy cannot propagate

from a particle beyond its adjacent neighbouring particlesin a single time-step [20]. The assumption

is made that all energy transferred across a particulate system is due to Rayleigh waves and the

contributions of distortional and dilational waves, collectively accounting for around one-third of

radiated energy [21], can therefore be neglected. The critical time-step is calculated using the

theoretical expression for the Rayleigh wave velocity for asystem such that

∆tc =
πr

β

√

ρ

G
, (5)

where r is the particle radius,ρ is the particle density,G is the shear modulus andβ can be

approximated by [20, 22]

β = 0.8766 + 0.163ν, (6)

whereν is the Poisson’s ratio of the particle.

Even for this relatively simple approach, there is some ambiguity about the particle radius to be

used in (5) for a polydisperse size distribution. The radius of the smallest particle in the system,rmin,

is used by [23, 24] whereas [20, 22] instead use the average particle radius,r̄, in (5). For monosized

particles,̄r = rmin, but as the degree of polydispersity in the system increases, ∆tc calculated using

rmin becomes increasingly more conservative than the form of (5) includingr̄.

The Rayleigh time-step criterion has been used for decades,see e.g. [22], and its continued

popularity implies that its use generally leads to stable simulations. However, this may not be

the case for highly dynamic systems. It is known that time-steps should be reduced when particle

relative velocities are high [25] but the Rayleigh approach lacks any velocity dependence, as can be

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 7

seen from the form of (5). Furthermore, the Rayleigh time-step does not consider system damping.

Thus the critical time-step calculated for the static assembly may be orders of magnitude larger than

would be required to ensure numerical stability for a highlydynamic, damped case.

Both of these existing methodologies, the two most popular among DEM users, have major

deficiencies for dynamic simulations with damping. This is currently addressed by applying large

factors of safety to the critical time-steps calculated using either methodology, leading to inefficient

simulations. This motivates the need to develop an alternative way to select time-steps for dynamical

systems with nonlinear contact interactions.

3. TWO-PARTICLE COLLISION

In this section, we will present the general mathematical framework for a two-sphere collision

which is compatible with any contact model. We consider the two-particle collision ofH andH ′

with massesm andm′, radii r andr′ and moments of inertiaI andI ′, as shown in Figure1. The

displacement and rotation of the centre of massG of bodyH can be described in the frame located

atG by the coordinatesq1, q2 andq3 and the angular rotationθ1, θ2 andθ3 and similarlyq′1, q′2 and

q′3 are the coordinates andθ′1, θ′2 andθ′3 are the rotations of the centre of massG′ of bodyH ′. We

let

q = (q1, q2, q3, θ1, θ2, θ3)
T , q′ = (q′1, q

′

2, q
′

3, θ
′

1, θ
′

2, θ
′

3)
T ,

q̇ = (q̇1, q̇2, q̇3, θ̇1, θ̇2, θ̇3)
T , q̇′ = (q̇′1, q̇

′

2, q̇
′

3, θ̇
′

1, θ̇
′

2, θ̇
′

3)
T ,

be the displacement and velocity vectors of the centre of mass ofH andH ′, respectively. We define

F andF ′ as the forces generated at impact of each body given by

F = (−F1,−F2,−F3) and F ′ = (F1, F2, F3) ,

where the subscripts1 or 3 represent the components of position, velocity and the contact force

acting in the tangent plane, and the subscript2 denotes the components acting in the direction

normal to the tangent plane. The direction in which the forcedue to gravity acts does not affect

the derivation; here it is arbitrarily assumed to act in the direction normal to the tangent plane with

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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8 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

H H ′

c2

c1,3

k2

k1,3

n1

n2

n3

P

Figure 1. Simplified 2D view of a collinear impact between twospheresH andH ′ with radii r and r′

separated in the normal direction by a Hertzian spring with spring constantk2, and separated in the

tangential directions by linear springs with spring constants k1 andk3, respectively. Linear damping acts

in all directions with constantsc1, c2 andc3. The initial relative velocity between the two bodies at impact

is denoted byvi.

gravitational accelerationg. This is the only external force or torque acting onH or H ′. Using

Newton’s second law, the equations of motion for sphereH and sphereH ′ at contact can be found

such that

dq̇1

dt
= −F1

m
, (7)

dq̇2

dt
= −F2

m
− g, (8)

dq̇3

dt
= −F3

m
, (9)

dθ̇1

dt
= −rF3

I
, (10)

dθ̇2

dt
= 0, (11)

dθ̇3

dt
=

rF1

I
. (12)

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 9

Similarly, the equations of motion for sphereH ′ are given by

dq̇′1
dt

=
F1

m′
, (13)

dq̇′2
dt

=
F2

m′
− g, (14)

dq̇′3
dt

=
F3

m′
, (15)

dθ̇′1
dt

= −r′F3

I ′
, (16)

dθ̇′2
dt

= 0, (17)

dθ̇′3
dt

=
r′F1

I ′
. (18)

3.1. Reducing the dimension of the system

For analysis purposes we are only interested in the dynamicsthat occur during the contact phase. It

is intuitive therefore to consider the system given by (7) – (18) in terms of a relative frame located

at the contact point of each sphere. We define the positionqP of the contact pointP of sphereH

relative to then1 − n2 − n3 frame as

qP := (q1P , q2P , q3P )
T
, (19)

where

q1P = q1 − rθ3, q2P = q2, q3P = q3 + rθ1 (20)

and where

q̇1P = q̇1 − rθ̇3, q̇2P = q̇2, q̇3P = q̇3 + rθ̇1. (21)

Similarly, for sphereH ′ we have that

q′P := (q′1P , q
′

2P , q
′

3P )
T
, (22)

where

q′1P = q′1 + r′θ′3, q′2P = q′2, q′3P = q′3 − r′θ′1 (23)

and where

q̇′1P = q̇′1 + r′θ̇′3, q̇′2P = q̇′2, q̇′3P = q̇′3 − r′θ̇′1. (24)

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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10 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

The differential equations for the changes in velocity at the contact pointP of particleH can be

ascertained by evaluating

dq̇1P

dt
=

dq̇1P

dq̇1

dq̇1

dt
+

dq̇1P

dθ̇3

dθ̇3

dt
, (25)

dq̇2P

dt
=

dq̇2P

dq̇2

dq̇2

dt
, (26)

dq̇3P

dt
=

dq̇3P

dq̇3

dq̇3

dt
+

dq̇3P

dθ̇1

dθ̇1

dt
. (27)

Using (7) – (12) together with (21) and (25) – (27) we have that














q̈1P

q̈2P

q̈3P















=















− 1

m − r2

I 0 0

0 − 1

m 0

0 0 − 1

m − r2

I





























F1

F2

F3















+















0

−g

0















, (28)

and similarly, forH ′ we have that














q̈′1P

q̈′2P

q̈′3P















=















1

m′
+ r′2

I′
0 0

0 1

m′
0

0 0 1

m′
+ r′2

I′





























F1

F2

F3















+















0

−g

0















. (29)

Now that we have translated the frame of reference to the contact point of each sphere, we can

further simplify by considering relative velocity changesat the common point of contact. For this

purpose we let

q̃1 = q1P − q′1P , q̃2 = q2P − q′2P + (r′ + r) , q̃3 = q3P − q′3P . (30)

Using (28), (29) and (30) gives














¨̃q1

¨̃q2

¨̃q3















=















− 1

m − r2

I − 1

m′
− r′2

I′
0 0

0 − 1

m − 1

m′
0

0 0 − 1

m − r2

I − 1

m′
− r′2

I′





























F1

F2

F3















, (31)

which is the change in the relative contact point velocity for H andH ′. We can further simplify by

using the fact thatI = 2

5
mr2 andI ′ = 2

5
m′r′

2 and defining the reduced massm̂ = mm′

m+m′
to give















¨̃q1

¨̃q2

¨̃q3















=















− 7

2m̂ 0 0

0 − 1

m̂ 0

0 0 − 7

2m̂





























F1

F2

F3















, (32)

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 11

which is the relative acceleration of the contact point of the contacting spheres during the impact

phase. This reduced system will make subsequent analysis much simpler.

3.2. 1-D Undamped Linear Contact

To illustrate the usability of this technique, we first consider a trivial, linear, undamped contact

interaction with forcing in the normal direction only. The contact forceF now takes the form

F =















0

k2q̃2

0















, (33)

where k2 represents the normal contact spring stiffness. Substituting (33) into (32) gives the

following system of equations















¨̃q1

¨̃q2

¨̃q3















=















0 0 0

0 −k2

m̂ 0

0 0 0





























q̃1

q̃2

q̃3















. (34)

The maximum stable time-step∆tc can then be calculated using the methodology in section2.1and

using (2), (4) and (34) to give

∆tc = 2

√

m̂

k2
. (35)

Substitutingm′ = m into (35), to allow for a direct comparison with the system considered in [17],

gives

∆tc =
√
2

√

m

k2
, (36)

which is identical to the bound reported in [17].

3.3. Hertz–Mindlin Contact

We now consider a nonlinear contact law and use this to illustrate the methods we are proposing for

choosing a stable time-step. Specifically we consider the Hertz–Mindlin contact law together with
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12 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

linear damping as stated below, such that

F1 = c1 ˙̃q1 + k1q̃2
1

2 q̃1, (37)

F2 = c2 ˙̃q2 + k2q̃2
3

2 , (38)

F3 = c3 ˙̃q3 + k3q̃2
1

2 q̃3, (39)

wherec1, c3 andc2 are the equivalent damping constants in the shear directions and normal direction

respectively and wherek1, k3 andk2 are the equivalent spring constants in the same directions.

Equations (37) – (39) are then used, together with (32), to form the equations of motion for a Hertz–

Mindlin contact interaction. The next step is to discretisethe system using the commonly used

central difference algorithm.

3.4. Discretised solution

For a detailed description of the Verlet-type central difference algorithm used in this paper, for both

fixed and variable time-steps, the reader is referred to [2]. For this analysis, we will consider an

interval of time [0, T ] partitioned inton discrete instances of time given bytn = n∆t. We also

introduce the half instances of time such that the velocities at the half instances are given by

˙̃qjn− 1

2

=
xjn − xjn−1

∆t
, ˙̃qjn+ 1

2

=
xjn+1

− xjn

∆t
. (40)

Then, the second derivative term is given by

¨̃qjn =
˙̃qjn+ 1

2

− ˙̃qjn− 1

2

∆t
, (41)

and the discretised form of (32) can be written as

¨̃q1n = − 7

2m̂
k1x2n

1

2x1n − 7

2m̂
c1 ˙̃q1n− 1

2

, (42)

¨̃q2n = −k2

m̂
x2n

3

2 − c2

m̂
˙̃q2n− 1

2

, (43)

¨̃q3n = − 7

2m̂
k3x2n

1

2x3n − 7

2m̂
c3 ˙̃q3n− 1

2

, (44)

For clarity, we will introduce a new notation to eliminate the half time instances. For this purpose

we let v̂n := ˙̃qn− 1

2

which gives the following system:

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)

Prepared usingnmeauth.cls DOI: 10.1002/nme



ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 13

v̂1n+1 = v̂1n −∆t

(

7

2m̂
k1x2n

1

2x1n +
7

2m̂
c1v̂1n

)

, (45)

x1n+1 = x1n +∆tv̂1n+1, (46)

v̂2n+1 = v̂2n −∆t

(

k2

m̂
x2n

3

2 +
c2

m̂
v̂2n

)

, (47)

x2n+1 = x2n +∆tv̂2n+1, (48)

v̂3n+1 = v̂3n −∆t

(

7

2m̂
k3x2n

1

2x3n +
7

2m̂
c3v̂3n

)

, (49)

x3n+1 = x3n +∆t ˆv3n+1. (50)

The original complex dynamics described by (7) – (18) has been greatly reduced to the system (45)

– (50). In Section3.6, we will use this equivalent system to determine bounds on the time-step.

Before this discussion, it is necessary to distinguish between numerical stability and accuracy for

this nonlinear problem.

3.5. Stabilityvs.accuracy

While it is well known that the numerical stability of a DEM simulation depends on the chosen

simulation time-step, so too does the accuracy of the simulation. For a contact between two Hertzian

spheres using the second-order velocity-Verlet integration scheme, Hanley and O’Sullivan [26] show

that, during a single calculation cycle, the truncation error in an energy balance is a function of

particle radii, density, shear modulus, Poisson’s ratio, simulation time-step and the relative velocity

between colliding particles. The magnitude of this truncation error generally increases with the last

two of these factors, i.e., by increasing the time-step or relative velocity, both of which move a

simulation closer to instability, the truncation error increases.

Despite this apparent similarity, there is a clear difference between the concepts of accuracy and

stability. The accrued error in an energy balance will be small for a stable simulation; the signs

of error terms during loading and unloading differ, giving atotal error of zero for the perfectly

symmetrical load reversal discussed in [26]. Instability is characterised by an uncontrolled, non-

physical growth of energy in a simulation [5], which may be easily detected using an energy balance.
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14 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

In Section3.6, we identify two significant analytical curves which may be drawn on a plot of

relative velocity against inter-particle overlap. It is proposed that a stable time-step should be small

enough so that these two analytical curves are not crossed inone time-step: at least one time-step is

needed to describe the first phase of the impact between initial contact and maximum compression,

and at least one time-step to describe the second phase between maximum compression and

minimum relative velocity. If this condition were not met, it would be possible for collision events

to be missed entirely.

It is instructive to consider the analogue of Section3.2 for an undamped Hertzian contact. The

Hertzian analogues of Equations (33) and (34) are

F =















0

k2q̃2
3

2

0















(51)

and














¨̃q1

¨̃q2

¨̃q3















=















0 0 0

0 −k2 q̃2
1
2

m̂ 0

0 0 0





























q̃1

q̃2

q̃3















, (52)

where theq̃2
1

2 term represents the square root of inter-particle overlap.If this term is taken to be

fixed for the purposes of this illustration, so that this linear analysis can be applied, then

∆tc ≈
√

2m

k2q̃2
1

2

(53)

for identical spheres of massm. The smallest possible∆tc arises from choosing the largest overlap.

The maximum overlap between identical Hertzian spheres of radiusr, q̃2max, is given as [13, 27]

q̃2max = r

(

5
√
2πρ

4

1− ν2

E
v2i

2

)

2

5

, (54)

in which the Young’s modulusE = 2G(1 + ν). Equation (54) can be substituted into (53) to obtain

an expression for∆tc as a function ofv2i if this linear analysis is assumed to be applicable (an

assumption which is not required in Section3.6). The expression thus obtained is approximately
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0.6tH , wheretH is the duration of a Hertzian contact between identical spheres [13, 27]:

tH = 2.94

(

5
√
2πρ

4

1− ν2

E

)

2

5 r

v2i
1

5

. (55)

Thus, this linear analysis based on Rayleigh’s bounding theorem [7] approximates a critical Hertzian

time-step a little larger than half of the contact duration,i.e., 1–2 time-steps are required at a

minimum to describe a two-particle contact. This matches the required minimum number of time-

steps for stability in the analysis presented in Section3.6. As the simulation time-step is reduced

more and more below the critical value needed for numerical stability, the accuracy of the simulation

will progressively improve [26].

3.6. Analysis of the impact phase

In this section, we will present the main results of this workand give our motivation for selecting a

time-step in this manner. Our techniques involve analysingthe impact phase, using the framework

derived in Sections3.1– 3.4, and deriving meaningful bounds based on the physics of the collision.

A note on linear stability theory is presented in Section5. This will enable comparison with

the bounds derived in this section without linearisation ofthe system. It will be demonstrated in

Section5 that linear stability theory is unable to describe these complex nonlinear interactions and

is therefore not a suitable basis for choosing a time-step; this explains why (53) which is based on a

linear assumption is only presented as an illustrative approximation.

3.6.1. Normal directionFirst let us consider the normal direction. We define the following

V̂ := ˆv2n+1 − ˆv2n (56)

X̂ := x2n+1 − x2n (57)

and, using (47) and (48), find the two curveŝV = 0 andX̂ = 0. Consider firstlyX̂ = 0. Here we are

following the theory given in [28], where the point of maximum compression is found by solving

for the instant of zero relative velocity to give

X̂ = 0 ⇒ ˆv2n =
∆tk2

m̂ x2n
3

2

1− ∆tc2
m̂

. (58)
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16 S. J. BURNS P. T. PIIROINEN K. J. HANLEY

The curve given by (58) corresponds to the point of maximum compression for a given∆t. If we

consider the limit as∆t approaches zero we have that

lim
∆t→0

v̂2n = lim
∆t→0

∆tk2

m̂ x2n
3

2

1− ∆tc2
m̂

= 0, (59)

which corresponds to the true solution for the curve of maximum compression. The solution̂v2n = 0

is expected due to the theory of [28]. As we take a smaller and smaller time-step, we approach the

true valuev̂2n = 0. We propose that in the first instance of motion (Phase 1), thetrajectory should

not cross this curve in one time-step. Considering nowV̂ = 0 yields

V̂ = 0 ⇒ v̂2n =
−k2

c2
x2n

3

2 , (60)

which corresponds to the point of minimum velocity, or when the restitution phase of the collision

ends. At the point̂V = 0, the two bodies go from the point of maximum compression to the point of

minimal relative velocity. We propose that in the second instance of motion (Phase 2), the trajectory

should not cross this curve in one time-step. In what follows, we will give a formal description of

each of the two phases of motion, and determine constraint equations on the time-step∆t.

Phase 1: In the first phase of the motion the system goes from initial contact to maximum

compression. Using (47) and (48) subject to the boundary conditions

v̂2n+1 ≈ 0 =⇒ x2n+1 ≈ x2n ≈ ∆tvi, v̂2n ≈ v2i (61)

gives
(

1− ∆tc2

m̂

)

− v2i
1

2 k2

m̂
∆t

5

2 = 0. (62)

Equation (62) describes the dynamics of going from the initial instant ofcontact to the point of

maximum compression. To physically capture the full impactphase it is necessary therefore to

choose a time-step such that the full dynamics of the compression phase can be captured. At the

least, we require one time-step to describe this phase so (62) can be solved numerically to give an

upper bound on the time-step.

It is noted that increasingv2i requires a smaller value of∆t to satisfy (62) with fixed values of

c2, k2 andm̂. It has been known for a long time that time-steps must be decreased when particle
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velocities, or strain rates, are high to maintain stabilityfor the Hertzian contact model and to ensure

acceptable accuracy of the simulation, e.g., the default safety factor on time-step in the PFC3D code

is recommended to be reduced ‘especially under rapidly changing conditions’ [25]. This research

quantifies the effect ofv2i on time-step.

Phase 2: In the second phase the system goes from maximum compression to the point at

which the relative velocity is a minimum. Using (47) subject to the following boundary conditions

v̂2n+1 ≈ −k2

c2
x2n+1

3

2 , v̂2n ≈ 0 (63)

gives

∆t

m̂

(

k2x2n

3

2

)

=
x2n+1 − x2n

∆t
=

−k2

c2
x2n+1

3

2 , (64)

and thus

∆tc =

(

x2n+1

x2n

)
3

2 m̂

c2
. (65)

During Phase 2,x2n+1 < x2n so ∆tc <
m̂
c2

based on (65). To aid in the visualisation of this

methodology, consider the schematic detailed in Figure2 of a two-sphere collision subject to a

Hertz–Mindlin contact interaction. As derived in the previous section, we consider the dynamics in

terms of the relative frame located at the contact point of the spheres. The spheres come into contact

with an initial positive relative velocity and leave with a negative relative velocity. Our techniques

are concerned with the rich dynamics which occur throughoutthe contact phase, as shown in Figure

2. For each of the three initial conditions, we see that the point of maximum compression and the

point of minimum velocity always occurs at the intersectionof the trajectories with the theoretical

curves given by (58) and (60), respectively. This allows us to choose a time-step such that we can

not cross either of the two analytical curves in one time-step. The premise of this approach is that the

impact phase for any collision will be fully captured and will lead to physical, stable simulations. In

the absence of damping, the points of maximum compression and minimum velocity respectively

coincide withv̂n = 0 andx2n ≤ 0.
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-0.08
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v̂2n

x2n

v̂2n = 0.08

v̂2n = 0.12 v̂2n = 0.16

ˆv2n =
∆tk2
m̂

x2n

3

2

1−
∆tc2
m̂

ˆv2n = −k2

c2
x2n

3

2

Figure 2. Relative velocity of a two-sphere collision as a function of the inter-particle overlap. Three different

incident velocities are shown as contours together with theanalytical expressions for the maximum overlap

curve and minimum velocity curve. The spheres start with an initial positive relative velocity.

3.6.2. No slip condition (Shear bounds)In the normal direction, the stable time-step identified

ensures that a velocity reversal cannot occur within one time-step after collision, i.e., the positive

incident velocities on Figure2 cannot become negative within one time-step as this would entail

crossing the ‘maximum overlap’ curve. A similar shear boundis proposed, that the tangential

velocity cannot be brought to zero in only one time-step. If,across one time-step, the shear force

were sufficient to bring the tangential velocity to zero, we would achieve a velocity reversal and

would likely introduce energy artificially into the system due to instability. Using (45) and (49)

subject to the initial conditions

v̂1n+1 ≈ 0 =⇒ x1n+1 ≈ x1n ≈ ∆tv1i, x2n ≈ ∆tv2i, (66)

v̂3n+1 ≈ 0 =⇒ x3n+1 ≈ x3n ≈ ∆tv3i, ˆv1n = v1i, v̂3n = v3i (67)

gives

1− 7

2m̂
∆tc1 −

7

2m̂
v2i

1

2 k1∆t
5

2 = 0 (68)

and

1− 7

2m̂
∆tc3 −

7

2m̂
v2i

1

2 k3∆t
5

2 = 0. (69)
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Equations (68) and (69) cannot be solved analytically but can be solved numerically to give upper

bounds on the time-step.

3.6.3. ImplementationFor the numerical analysis that will be presented in Section4.2.2, the critical

time-step is chosen as the minimum of (62), (65), (68) and (69). In practice, a safety factor should

be included to ensure the time-step chosen is not exactly at the upper bound.

3.6.4. UndampedFor the undamped system, the compression and restitution phases of impact are

symmetric. We therefore only need to consider one phase in the calculation of the critical time-step

in the normal direction. Using (62) subject toc2 = 0 gives

∆tc2 =

(

m̂

k2v2i
1

2

)
2

5

. (70)

These normal bounds have the same form as the bounds used in [12]. Considering the undamped

case for the shear bounds, and using (68) and (69) subject toc1 = c3 = 0, gives

∆tc1 =

(

2m̂

7k1v2i
1

2

)
2

5

(71)

and

∆tc3 =

(

2m̂

7k3v2i
1

2

)
2

5

. (72)

Comparing (71) and (72) with (70) we see that

∆tc2 > ∆tc1,3, (73)

providedk1,3 > 2

7
k2 which is always the case referring to Section4.1, i.e., the shear bounds dictate

the critical time-step. Tu and Andrade [16] similarly found, albeit using a completely different

approach, that the critical time-step is dictated by the tangential spring constants for an undamped

system.
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4. RESULTS

4.1. Comparison with Rayleigh time-step and Hertz contact time

The Rayleigh time-step criterion (Section2.2) estimates the critical time-step in terms of the particle

density, shear modulus and Poisson’s ratio. In order to compare our estimate for the critical time-

step, it is first necessary to rewrite in terms of the same material parameters. For this purpose, we

can relate the particle spring constants, controlling the contact stiffness, to the shear modulus and

Poisson’s ratio as follows:

k1,3 =
4G

√
r̂

(2− ν)
, k2 =

4G
√
r̂

3 (1− ν)
(74)

wherer̂ = rr′

r+r′ is the reduced particle radius. Taking the ratio,

k1,3

k2
=

3(1− ν)

(2− ν)
. (75)

At ν = 0.5, k1,3 = k2; otherwise,k1,3 > k2 for physically realistic values ofν. For the undamped

system, using (70) and (74) we get

∆tc2 = v2i
−

1

5 (1− ν)
2/5

(

r3r′3

r3+r′3√
r̂

)

2

5
(πρ

G

)
2

5

(76)

for the normal bounds. Considering the undamped case for theshear bounds, and using (68) and

(69) together with (74) , gives

∆tc1,3 = v2i
−

1

5 (2− ν)2/5

(

r3r′3

r3+r′3√
r̂

)

2

5 (

2πρ

21G

)
2

5

. (77)

Recalling the Rayleigh time-step criterion from Section2.2, we have

∆tc =
πrmin

0.8766 + 0.163ν

√

ρ

G
, (78)

taking the more conservative form of the criterion based onrmin rather than̄r. If r = r′, ∆tc ∝ r in

(76) and (77): the same proportionality to radius as in (78).

The duration of a Hertzian contact between identical spheres, tH , was presented above as (55).

ComparingtH and (76), both equations have the same dependence onν, ρ, G, r andv2i. In fact,

∆tc2 for the undamped system is exactly half oftH : the expected result considering the origin of

(76) in Section3.6.
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4.2. Numerics

In this section, we will numerically analyse how the critical time-step calculated in Section3 is

affected by the system parameters. The purpose of this is to gain insight into how damping, together

with the initial relative velocity of collision, affects the critical time-step. For the undamped case,

we will compare the results with the time-step predicted using the Rayleigh approach (78). For the

numerical analysis in this section, we consider variants oftwo sets of parameters, as detailed in the

figure captions.

4.2.1. UndampedFigure3 shows the variation of critical time-step with initial relative velocity,vi,

for different contours of shear modulus when damping is inactive. At low velocities, approaching

quasi-static conditions,∆tc is greater than the Rayleigh time-step and thus less conservative.∆tc

decreases with increasingvi. This is consistent with the recommendation within the commercial

PFC3D code [25] to reduce the default value of the safety factor by which theestimated critical

time-step is multiplied when the Hertzian contact model is used under rapidly changing conditions.

The dashed lines in Figure3 and all subsequent figures indicate the corresponding Rayleigh time-

steps given by (78). In Figure3, these are constant with respect tovi. This is a major shortcoming

of the Rayleigh time-step methodology as it fails to capturethe known dependence of time-step on

velocity. For a different set of input parameters corresponding to glass ballotini (beads), Figure

4 shows that for low velocity∆tc is again greater than the Rayleigh time-step and thus less

conservative. However, as the relative velocity increases, ∆tc becomes lower than the Rayleigh

prediction.

In Figures5 and6, we investigate the effect of particle size on∆tc. For this purpose, the ratio

m′

m is varied between 0 and 1 (m ≥ m′). In both figures,∆tc approaches zero asm
′

m approaches

zero, consistent with analytical and numerical studies, e.g., [11]. As for the monosized particles,

increasingvi has the effect of decreasing∆tc. For the industrial powder, the Rayleigh time-step

is between a relative velocity of 0.1 m s−1 and 1 m s−1, whereas it is closest to 1 m s−1 for the glass

ballotini in Figure6. At higher velocities, e.g., during shot peening using glass beads as an abrasive
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0 0.02 0.04 0.06 0.08 0.1
0

15

30
G

5G
15G

vi

µs

ms−1

∆tc

Figure 3. Critical time-step,∆tc (solid line), against initial relative velocity,vi. Parameters are based on

those in [29] for an unspecified representative industrial powder in a simulated mixer:G = 300MPa,

ν = 0.25, ρ = 1000 kgm−3, r = r′ = 1.5mm. The dashed line shows the corresponding Rayleigh critical

time-step.

0 0.4 0.8 1.2 1.6 2
0

25

50

75 0.1G
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10G

vi

µs

ms−1

∆tc

Figure 4. Critical time-step,∆tc, against initial relative velocity,vi using parameters for large glass ballotini

from [30]: G = 17GPa, ν = 0.22, ρ = 2530 kgm−3, r = 10.1mm, r′ = 10.3mm.
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medium, choosing the Rayleigh time-step is likely to lead toinstability. Conversely, the Rayleigh

time-step would be unnecessarily conservative for quasi-static simulations.

0 0.25 0.5 0.75 1
0

7

14

vi = 0.1ms−1

vi = 1 ms−1

vi = 10ms−1

µs

m′

m

∆tc

Figure 5. Critical time-step,∆tc, against particle mass ratio,m
′

m , using the values ofG, ν and ρ for an

industrial powder from Figure3 andm+m′ = 0.0001 kg.

0 0.25 0.5 .75 1
0

1.5

3
vi = 0.1ms−1

vi = 1 ms−1

vi = 10ms−1

µs

m′

m

∆tc

Figure 6. Critical time-step,∆tc, against particle mass ratio,m
′

m , using the values ofG, ν andρ for glass

ballotini from Figure4 andm+m′ = 0.0001 kg.
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In Figures7 and8, we investigate the effect of particle size on∆tc by increasing the system

mass,m+m′, by a factor of 100 compared to those in Figures5 and6. The greater system mass,

or particle radii considering the fixed density, has the effect of increasing∆tc, consistent with prior

studies [11]. However, the ratios between the Rayleigh time-step and the time-steps calculated using

this approach are unchanged.

0 0.25 0.5 0.75 1
0

35

70 vi = 0.1ms−1

vi = 1 ms−1
vi = 10ms−1

µs

m′

m

∆tc

Figure 7. Critical time-step,∆tc, against particle mass ratio,m
′

m , for an industrial powder [29] with

G = 300MPa, ν = 0.25, ρ = 1000 kgm−3, m+m′ = 0.01 kg.

4.2.2. DampedThe inclusion of damping can have a very significant effect onthe time-step.

Invariably, the inclusion of damping necessitates a smaller time-step to ensure stability compared

to the equivalent undamped case. This is an important consideration as many practical simulations

contain some mechanical damping to dissipate energy. Figures9 and 10 are for the same cases

as in Section4.2.1: a typical industrial powder and large glass beads, respectively. However, the

contours now show different values of the damping constants, c1 = c2 = c3. In both cases, for

sufficiently small damping and low relative velocity,∆tc is less conservative than the Rayleigh

time-step. However, increasingc2 beyond a certain point results in a more conservative estimate

of ∆tc than predicted by Rayleigh. The Rayleigh time-step remainsconstant with respect to both
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Figure 8. Critical time-step,∆tc, against particle mass ratio,m
′

m , for glass ballotini [30] with G = 17GPa,

ν = 0.22, ρ = 2530 kgm−3, m+m′ = 0.01 kg.

c2 andvi, making its use as a stable bound highly unreliable when considering damped, dynamic

interactions.

This result, that the inclusion of damping reduces the critical time-step, is in agreement with

[31]. In that paper, a Hertz–Mindlin contact model is adopted and the damping term originates from

the presence of liquid bridges between the particles. Usinga semi-empirical approach, Washino et

al. [31] find that the time-step must decrease to maintain stabilitywith increasing liquid viscosity,

i.e., an increasing degree of damping. Damping also reduces∆tc in finite element codes, as seen by

comparing (2) and (3).

In Figures11 and12, we investigate the effect of particle size on∆tc by decreasing the ratiom
′

m

for varying contours ofc2. In Figure11, ∆tc is more conservative than the Rayleigh time-step for

all c2 due to the interaction of system parameters. However, in Figure12, ∆tc is less conservative

than the Rayleigh time-step for sufficiently low values ofc2 andm′

m .
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0.12 0.24
0

12

24
c2 = 0 kg s−1

c2 = 0.1 kg s−1

c2 = 0.5 kg s−1

ms−1

µs

vi

∆tc

Figure 9. Critical time-step,∆tc, against initial relative velocity,vi, using the parameters from Figure3 with

damping constants of 0, 0.1 and 0.5 kg s−1 andc1 = c2 = c3.

0 0.25 0.5 0.75 1
0

15

30

c2 = 0 kg s−1

c2 = 100 kg s−1

c2 = 200 kg s−1

µs

ms−1vi

∆tc

Figure 10. Critical time-step,∆tc, against initial relative velocity,vi, for the large glass beads with the

parameters used for Figure4 andc1 = c2 = c3 values of 0, 100 and 200 kg s−1.

5. A NOTE ON LINEAR STABILITY

In this section, we will show that linearisation alone cannot be applied to aid in the analytical

development of time-step criteria for nonlinear systems. The system given by (45) – (50) can be
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0
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12
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c2 = 0 kg s−1
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µs

m′

m

∆tc

Figure 11. Critical time-step,∆tc, against particle mass ratio,m
′

m , for an industrial powder with the

parameters used for Figure5, vi = 1 m s−1 andc1 = c2 = c3 values of 0, 1 and 5 kg s−1.

0 0.25 0.5 0.75 1
0

1

2

c2 = 50 kg s−1

c2 = 0 kg s−1

c2 = 5 kg s−1

µs

m′

m

∆tc

Figure 12. Critical time-step,∆tc, against particle mass ratio,m
′

m , for glass ballotini with the parameters

used for Figure6, vi = 1 m s−1 andc1 = c2 = c3 values of 0, 5 and 50 kg s−1.

viewed as a discrete nonlinear map. It is therefore intuitive to employ dynamical systems theory to

complement the time-step stability analysis.
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5.1. Fixed Points

Fixed points of adiscrete dynamical system, or a map, can be viewed as a static value of the

dynamical systemor constant solutions to the discrete equations. Consider thej-dimensional map

xn+1 = f (xn) , (79)

wherex = (x1, . . . , xj)
T andf(x) = (f1, . . . , fj)

T is a function of the system variablex, such that

x1n+1 = f1
(

x1n, . . . , xjn

)

(80)

...

xjn+1
= fj

(

x1n, . . . , xjn

)

(81)

Any fixed pointx∗ = (x1
∗, . . . xj

∗)
T of the map(80)− (81) must satisfy the equations

f1 (x1
∗, . . . xj

∗) = x1
∗, · · · , fj (x1

∗, . . . xj
∗) = xj

∗. (82)

Solutions of (82) give us the location of the fixed points and, potentially, also some insight into the

stability characteristics of the nonlinear system.

5.2. Stability of the linearised systems

In order to ascertain the linear stability characteristicsof a fixed point of a nonlinear map, it is

necessary to consider a linearisation of the map in the neighborhood of the fixed point. This can be

achieved by computing the JacobianJ(x∗) of the nonlinear map evaluated at the fixed point, and

thus we end up with a linear map given by

xn+1 = J(x∗)xn, (83)

that is valid in the vicinity ofx∗. For the map (80) – (81) we have the linear system















x1n+1

...

xjn+1















≅















∂f1
∂x1

(x1
∗, . . . , xj

∗) · · · ∂f1
∂xj

(x1
∗, . . . , xj

∗)

...
. . .

...

∂fj
∂x1

(x1
∗, . . . xj

∗) · · · ∂fj
∂xj

(x1
∗, . . . , xj

∗)





























x1n

...

xjn















, (84)

which is linearised about the fixed pointx∗ = (x1
∗, . . . xj

∗)T .
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The linear stability of the fixed point is determined by the nature of the eigenvaluesλi of

the Jacobian evaluated at the fixed point. In general, a fixed point is asymptotically stable if all

eigenvalues are contained within the unit circle of the complex plane, i.e., such that|λi| < 1;

otherwise the fixed point is unstable.

5.3. Reduced dynamics

If we consider the reduced system and the dynamics in the normal direction only, the map given by

(45) – (50) reduces to

v̂n+1 = v̂n −∆t

(

k2

m̂
xn

3

2 +
c2

m̂
v̂n

)

, (85)

xn+1 = xn +∆tv̂n+1. (86)

Using (82), we find that the only fixed point for the reduced map is(v∗, x∗)T = (0, 0)
T . The

linearised system about(v, x) = (0, 0)T can then be found, using (84), and is given by







v̂n+1

xn+1






=







1− c2∆t
m̂ 0

∆t− c2∆t2

m̂ 1













v̂n

xn






. (87)

The Jacobian of the linearised system, evaluated at the fixedpoint, has the eigenvalues

λ1 = 1, λ2 = 1− c2∆t

m̂
(88)

with corresponding eigenvectors

v1 =







0

1






, v2 =







c2
c2∆t−m̂

1






. (89)

Since one of the eigenvalues is equal to1, we have that the fixed point in this setup is degenerate

and thus the local dynamics are given by one (stable or unstable) manifold and a centre manifold.

Furthermore, as mentioned above, the stability of the fixed point requires that the second manifold is

stable and thusλ2 has to be contained within the unit circle of the complex plane, such that|λ2| ≤ 1.

Applying this criterion toλ2 given in (88) gives

0 ≤ ∆t ≤ 2m̂

c2
. (90)
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This analysis only holds, however, for the flow in the vicinity of the fixed point. For a sufficiently

small initial relative velocity, this would be an appropriate bound on the time-step. This bound is

independent of the spring force, and is more than twice the value calculated in (65), derived for the

unloading from maximum compression to separation (Phase 2).

Linearisation is the most commonly used tool for analysing the stability of nonlinear systems in

engineering. This analysis clearly shows that one should bevery careful when linearising and using

that as an approximation of what happens in the systems. Thisfurther motivates the need for a new

method for selecting stable time steps for nonlinear systems. To really understand what happens

locally to the fixed point would require further analysis andlies outside the scope of the present

analysis.

6. DISCUSSION AND CONCLUSIONS

An alternative technique has been proposed to determine numerical simulation stability for a

nonlinear contact interaction including damping, based onanalysing the dynamics of the impact

phase. This method is based on a general framework which analyses the contact phase in terms of

the discretised contact point equations of motion which form a linear or nonlinear map (depending

on the nature of the contact law). This general framework is compatible for collisions of spherical

particles subject to a linear or nonlinear contact law.

We performed a numerical investigation of how the critical time-step varies as a function of the

system damping together with the initial relative velocityof collision. This analysis is the first of its

kind and provides an intuitive, easy-to-use technique for engineers who want to ensure stable, but

not overly conservative, numerical simulations of dynamicsystems with damping. The analytical

and numerical results presented here have also confirmed previous observations in the literature

showing how the numerics become less stable with increased system damping and relative collision

velocity.

This analysis is only applicable to two contacting spherical particles, as is the case for the

commonly used Rayleigh time-step approach. Nevertheless,it still provides a very useful guide for
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how to choose a stable time-step for dynamic systems with damping. Furthermore, the framework

presented here is general so can be extended, e.g., to incorporate a close-packing of spherical

particles, a configuration more representative of certain DEM use cases. Pending such a study, it is

important to note that∆tc should be reduced for multiple inter-particle contacts. Recently, Otsubo

et al. [11] discovered the relationship∆tc ∝ C
−

2

3

N,max for a specific polydisperse packing of spheres

with a Hertz–Mindlin contact model whereCN,max is the maximum particle coordination number.

A basic introduction to dynamical systems theory was given and used to determine the stability

of a simplified version of the model system for low-velocity collision cases. While the results are

only partial, it shows that linearisation alone does not give us all the answers to the stability of the

full system. However, the proportionality of the stabilitybound tom̂
c2

obtained further confirms the

validity of the bound for the unloading phase of the inter-particle impact. The extension of this work

has been left to future research.

In practice, a safety factor is included when using the Rayleigh time-step. We propose using

a similar safety factor for the implementation of our critical time-step. The safety factor can be

viewed as the approximate number of steps required to accurately describe the individual segments

of the impact phase. From the numerical results, we have found that our critical time-step exceeds

the Rayleigh time-step for a large region of parameter space. Arguably more important, however, is

the fact that we have highlighted the regions in parameter space where a much more conservative

time-step is required. This further emphasizes the shortcomings of the Rayleigh time-step approach.
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10. Han K, Perić D, Owen DRJ, Yu J. A combined finite/discreteelement simulation of shot peening processes – Part

II: 3D interaction laws.Engineering Computations2000;17(6):680–702.

11. Otsubo M, O’Sullivan C, Shire T. Empirical assessment ofthe critical time increment in explicit particulate discrete

element method simulations.Computers and Geotechnics2017;86:67–79.

12. Wada K, Senshu H, Matsui T. Numerical simulation of impact cratering on granular material.Icarus 2006;

180(2):528–545.

13. Timoshenko SP, Goodier JN.Theory of Elasticity. 3 edn., McGraw-Hill, 1970.

14. Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed.Powder Technology

1993;77(1):79–87.

15. Rojek J, Nosewicz S, Jurczak K, Chmielewski M, Bochenek K, Pietrzak K. Discrete element simulation of powder

compaction in cold uniaxial pressing with low pressure.Computational Particle Mechanics2016;3(4):513–524.

16. Tu X, Andrade JE. Criteria for static equilibrium in particulate mechanics computations.International Journal for

Numerical Methods in Engineering2008;75(13):1581–1606.

17. O’Sullivan C, Bray JD. Selecting a suitable timestep fordiscrete element simulations that use the central difference

algorithm time integration scheme.Engineering Computations2004;21(2/3/4):278–303.

18. Livermore Software Technology Corporation.LS-DYNA Theory Manual. Livermore Software Technology

Corporation, Livermore, California, 2006.

19. ABAQUS, Inc.ABAQUS Theory Manual (v6.6). ABAQUS, Inc., Providence, Rhode Island, 2006.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)

Prepared usingnmeauth.cls DOI: 10.1002/nme



ESTABLISHING TIME-STEPS FOR NONLINEAR DEM SIMULATIONS 33

20. Li Y, Xu Y, Thornton C. A comparison of discrete element simulations and experiments for ‘sandpiles’ composed

of spherical particles.Powder Technology2005;160(3):219–228.

21. Johnson KL.Contact mechanics. Springer, 1985.

22. Thornton C, Randall CW.Applications of theoretical contact mechanics to solid particle system simulation, in

Satake, M. and Jenkins, J. T., (Eds), Micromechanics of Granular Materials. Elsevier, 1988.

23. Kremmer M, Favier JF. A method for representing boundaries in discrete element modelling – part II: Kinematics.

International Journal for Numerical Methods in Engineering 2001;51(12):1423–1436.

24. Kafui KD, Thornton C, Adams MJ. Discrete particle-continuum fluid modelling of gas–solid fluidised beds.

Chemical Engineering Science2002;57(13):2395–2410.

25. Itasca Consulting Group.PFC3D: Particle Flow Code in Three Dimensions User’s Guide. 4 edn., Itasca Consulting

Group, Minneapolis, Minnesota, 2008.

26. Hanley KJ, O’Sullivan C. Analytical study of the accuracy of discrete element simulations.International Journal

for Numerical Methods in Engineering2017;109(1):29–51.

27. Chung Y, OOi J. Benchmark tests for verifying discrete element modelling codesat particle impact level.Grannular

Matter 2011;13:643–656.

28. Goldsmith W.Impact: The theory and physical behaviour of colliding solids. Dover Publications, 2001.

29. Gao Y, Boukouvala F, Engisch W, Meng W, Muzzio FJ, Ierapetritou MG. Improving continuous powder blending

performance using projection to latent structures regression. Journal of Pharmaceutical Innovation2013;8(2):99–

110.

30. Chung YC, Ooi JY. Influence of discrete element model parameters on bulk behavior of a granular solid under

confined compression.Particulate Science and Technology2007;26(1):83–96.

31. Washino K, Chan EL, Miyazaki K, Tsuji T, Tanaka T. Time step criteria in DEM simulation of wet particles in

viscosity dominant systems.Powder Technology2016;302:100–107.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)

Prepared usingnmeauth.cls DOI: 10.1002/nme


	1 Introduction
	2 Current Methodologies
	2.1 Stability as a function of mass and stiffness
	2.2 Stability using the Rayleigh time-step

	3 Two-particle collision
	3.1 Reducing the dimension of the system
	3.2 1-D Undamped Linear Contact
	3.3 Hertz–Mindlin Contact
	3.4 Discretised solution 
	3.5 Stability vs. accuracy
	3.6 Analysis of the impact phase
	3.6.1 Normal direction
	3.6.2 No slip condition (Shear bounds)
	3.6.3 Implementation
	3.6.4 Undamped


	4 Results
	4.1 Comparison with Rayleigh time-step and Hertz contact time
	4.2 Numerics
	4.2.1 Undamped
	4.2.2 Damped


	5 A note on linear stability
	5.1 Fixed Points
	5.2 Stability of the linearised systems
	5.3 Reduced dynamics

	6 Discussion and Conclusions

