85 research outputs found

    Preparation of Group I Introns for Biochemical Studies and Crystallization Assays by Native Affinity Purification

    Get PDF
    The study of functional RNAs of various sizes and structures requires efficient methods for their synthesis and purification. Here, 23 group I intron variants ranging in length from 246 to 341 nucleotides—some containing exons—were subjected to a native purification technique previously applied only to shorter RNAs (<160 nucleotides). For the RNAs containing both exons, we adjusted the original purification protocol to allow for purification of radiolabeled molecules. The resulting RNAs were used in folding assays on native gel electrophoresis and in self-splicing assays. The intron-only RNAs were subjected to the regular native purification scheme, assayed for folding and employed in crystallization screens. All RNAs that contained a 3′ overhang of one nucleotide were efficiently cleaved off from the support and were at least 90% pure after the non-denaturing purification. A representative subset of these RNAs was shown to be folded and self-splicing after purification. Additionally, crystals were grown for a 286 nucleotide long variant of the Clostridium botulinum intron. These results demonstrate the suitability of the native affinity purification method for the preparation of group I introns. We hope these findings will stimulate a broader application of this strategy to the preparation of other large RNA molecules

    ClpP protease activation results from the reorganization of the electrostatic interaction networks at the entrance pores

    Get PDF
    Bacterial ClpP is a highly conserved, cylindrical, self-compartmentalizing serine protease required for maintaining cellular proteostasis. Small molecule acyldepsipeptides (ADEPs) and activators of self-compartmentalized proteases 1 (ACP1s) cause dysregulation and activation of ClpP, leading to bacterial cell death, highlighting their potential use as novel antibiotics. Structural changes in Neisseria meningitidis and Escherichia co ClpP upon binding to novel ACP1 and ADEP analogs were probed by X-ray crystallography, methyl-TROSY NMR, and small angle X-ray scattering. ACP1 and ADEP induce distinct conformational changes in the ClpP structure. However, reorganization of electrostatic interaction networks at the ClpP entrance pores is necessary and sufficient for activation. Further activation is achieved by formation of ordered N-terminal axial loops and reduction in the structural heterogeneity of the ClpP cylinder. Activating mutations recapitulate the structural effects of small molecule activator binding. Our data, together with previous findings, provide a structural basis for a unified mechanism of compound-based ClpP activation2CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP306943/2015-8; 420567/2016-099999.004913/2015-092015/15822-1; 2012/01953-9; 2016/05019-0; 2012/50161-8Precision Medicine Initiative (PRiME) at the University of Toronto internal fellowship [PMRF2019-007]; Canadian Institutes of Health Research (CIHR) postdoctoral fellowshipCanadian Institutes of Health Research (CIHR); CNPq-Brazil fellowship [202192/2015-6]; Saskatchewan Health Research Foundation postdoctoral fellowship; Ontario Graduate Scholarship (OGS)Ontario Graduate Scholarship; Department of Biochemistry at the University of Toronto; Centre for Pharmaceutical Oncology (University of Toronto); CIHR Training Program in Protein Folding and Interaction Dynamics: Principles and Diseases fellowshipCanadian Institutes of Health Research (CIHR) [TGF-53910]; University of Toronto Fellowship from the Department of Biochemistry; OGS fellowship; NSERC PGS-D2 fellowship; CIHR Emerging Team Grants from the Institute of Infection and ImmunityCanadian Institutes of Health Research (CIHR) [XNE-86945]; CIHR Project grantCanadian Institutes of Health Research (CIHR) [PJT-148564]; Global Affairs Canada (Canada); CAPES (Brazil)CAPES [99999.004913/2015-09]; NSERCNatural Sciences and Engineering Research Council of Canada [RGPIN-2015-04877, DG-20234]; Canada Research Chairs ProgramCanada Research Chairs; CIHR new investigator programCanadian Institutes of Health Research (CIHR); FAPESPFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2015/15822-1, 2012/01953-9, 2016/05019-0, 2012/50161-8]; CNPqNational Council for Scientific and Technological Development (CNPq) [306943/2015-8, 420567/2016-0]; AbbVie [1097737]; BayerBayer AG [1097737]; Boehringer IngelheimBoehringer Ingelheim [1097737]; Genome Canada through Ontario Genomics Institute GrantGenome Canada [1097737, OGI-055]; GlaxoSmithKlineGlaxoSmithKline [1097737]; JanssenJohnson & Johnson USAJanssen Biotech Inc [1097737]; Lilly CanadaEli Lilly [1097737]; MerckMerck & Company [1097737]; Novartis Research Foundation [1097737]; Ontario Ministry of Economic Development and Innovation [1097737]; PfizerPfizer [1097737]; TakedaTakeda Pharmaceutical Company Ltd [1097737]; Wellcome Trust GrantWellcome Trust [1097737, 092809/Z/10/Z]; Canada Foundation for InnovationCanada Foundation for Innovation; NSERCNatural Sciences and Engineering Research Council of Canada; University of Saskatchewan; Government of Saskatchewan; Western Economic Diversification Canada; National Research Council Canada; CIHRCanadian Institutes of Health Research (CIHR

    The spectrum of thyroid dysfunction in an Australian hepatitis C population treated with combination Interferon-α2β and Ribavirin

    Get PDF
    BACKGROUND: The study aims to assess the pattern of thyroid response to combination Interferon-α2β (IFN-α) and Ribavirin (RBV) anti-viral therapy in an Australian hepatitis C cohort. These include the prevalence of thyroid dysfunction (TD) including hyperthyroidism and hypothyroidism and their possible predictors, the common overall pattern of thyroid function tests whilst receiving therapy and TD outcomes, and the correlation with HCV status outcome. METHODS: A retrospective analysis of all medical records was performed to assess thyroid function in Hepatitis C Virus (HCV) patients who were treated at the Hunter Area hepatitis C treatment center between 1995 and March 2004. The centre is part of the John Hunter hospital, a major tertiary referral centre in New South Wales, Australia. RESULTS: There were 272 cases available for review. The prevalence of TD is 6.7 percent and is made up predominantly of females (80 percent). There were 3 (1.1 percent) cases of hyperthyroidism with 2 (67 percent) females. Thirteen out of fifteen (80 percent) cases of hypothyroidism were females with the overall prevalence of 5.5 percent. The majority of hypothyroid patients still required Thyroxine supplement at the end of follow up. CONCLUSION: Ninety three percent of HCV treated patients have intact thyroid function at the end of treatment. The predominant TD is hypothyroidism. The predominant pattern of thyrotoxicosis (TTX) is that of thyroiditis although the number is small. Graves' like disease was not observed. People with pre-existing thyroid auto-antibodies should be closely monitored for thyroid dysfunction, particularly hypothyroidism

    Structures of the Signal Recognition Particle Receptor from the Archaeon Pyrococcus furiosus: Implications for the Targeting Step at the Membrane

    Get PDF
    In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP•magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution. Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRP•SR targeting complexes

    Structures of SRP54 and SRP19, the Two Proteins that Organize the Ribonucleic Core of the Signal Recognition Particle from Pyrococcus furiosus

    Get PDF
    In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 Å resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely α-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 Å resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19•SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Total Synthesis of the Cytotoxic Enehydrazide Natural Products Hydrazidomycins A and B by a Carbazate Addition/Peterson Olefination Approach

    No full text
    The first total syntheses of two natural antitumor enehydrazide compounds (hydrazidomycins A and B) and a related positional isomer of hydrazidomycin B (elaiomycin B) have been accomplished in a rapid and stereocontrolled fashion using a Peterson elimination approach. A regioselective silyl epoxide ring opening reaction with Boc-carbazate followed by base-mediated Peterson siloxide elimination stereospecifically installed the key <i>Z</i>-enehydrazide functionality. The use of Boc-carbazate allowed for the differential functionalization of the hydrazide nitrogens
    corecore