34 research outputs found

    High-speed X-ray ptychographic tomography

    Get PDF
    X-ray ptychography is a coherent scanning imaging technique widely used at synchrotron facilities for producing quantitative phase images beyond the resolution limit of conventional x-ray optics. The scanning nature of the technique introduces an inherent overhead to the collection at every scan position and limits the acquisition time of each 2D projection. The overhead associated with motion can be minimised with a continuous-scanning approach. Here we present an acquisition architecture based on continuous-scanning and up-triggering which allows to record ptychographic datasets at up to 9 kHz. We demonstrate the method by applying it to record 2D scans at up to 273 ”m2/s and 3D scans of a (20 ”m)3 volume in less than three hours. We discuss the current limitations and the outlook toward the development of sub-second 2D acquisition and minutes-long 3D ptychographic tomograms

    Ptychographic Imaging of Mixed States

    Get PDF
    Ptychography is a lens-less imaging technique which, by replacing the function of a lens with a computer algorithm, allows for aberration free, complex imaging, of all manner of specimens in a variety of situations. Compared to alternative methods, the technique has relatively loose requirements on the physical setup and has been demonstrated to operate across the visible light, x-ray, and electron regimes. This thesis reviews progress in the field followed by four chapters of original work. The unique imaging process of ptychography is initially examined in theoretical terms and the conclusions that are drawn are subsequently applied in all three of the main imaging domains; visible light, x-ray, and electron. The development of several new algorithms is discussed, which alleviate many of the current experimental constraints. These include the processing of diffraction patterns that are sampled grossly below the conventional Nyquist limit, the automatic correction of detector imperfections, the imaging of mixed states through multiple wavelength illumination, and the reconstruction of partially coherent data in the STEM configuration through the deconvolution of an extended source

    Spectroscopic imaging with single acquisition ptychography and a hyperspectral detector

    Get PDF
    We present a new method of single acquisition spectroscopic imaging with high spatial resolution. The technique is based on the combination of polychromatic synchrotron radiation and ptychographic imaging with a recently developed energy discriminating detector. We demonstrate the feasibility with a Ni-Cu test sample recorded at I13-1 of the Diamond Light Source, UK. The two elements can be clearly distinguished and the Ni absorption edge is identified. The results prove the feasibility of obtaining high-resolution structural and chemical images within a single acquisition using a polychromatic X-ray beam. The capability of resolving the absorption edge applies to a wide range of research areas, such as magnetic domains imaging and element specific investigations in biological, materials, and earth sciences. The method utilises the full available radiation spectrum and is therefore well suited for broadband radiation sources

    Hard X‐ray Nanotomography for 3D Analysis of Coking in Nickel‐based Catalysts

    Get PDF
    Understanding catalyst deactivation by coking is crucial for knowledge-based catalyst and process design in reactions with carbonaceous species. Post-mortem analysis of catalyst coking is often performed by bulk characterization methods. Here, hard X-ray ptychographic computed tomography (PXCT) was used to study Ni/Al2_{2}O3_{3} catalysts for CO2_{2} methanation and CH4_{4} dry reforming after artificial coking treatment. PXCT generated quantitative 3D maps of local electron density at ca. 80 nm resolution, allowing to visualize and evaluate the severity of coking in entire catalyst particles of ca. 40 Όm diameter. Coking was primarily revealed in the nanoporous solid, which was not detectable in resolved macropores. Coke formation was independently confirmed by operando Raman spectroscopy. PXCT is highlighted as an emerging characterization tool for nanoscale identification, co-localization, and potentially quantification of deactivation phenomena in 3D space within entire catalyst particles

    Hard X-Ray Nanotomography for 3D Analysis of Coking in Nickel-Based Catalysts

    Get PDF
    Understanding catalyst deactivation by coking is crucial for knowledge-based catalyst and process design in reactions with carbonaceous species. Post-mortem analysis of catalyst coking is often performed by bulk characterization methods. Here, hard X-ray ptychographic computed tomography (PXCT) was used to study Ni/Al2O3 catalysts for CO2 methanation and CH4 dry reforming after artificial coking treatment. PXCT generated quantitative 3D maps of local electron density at ca. 80 nm resolution, allowing to visualize and evaluate the severity of coking in entire catalyst particles of ca. 40 ÎŒm diameter. Coking was primarily revealed in the nanoporous solid, which was not detectable in resolved macropores. Coke formation was independently confirmed by operando Raman spectroscopy. PXCT is highlighted as an emerging characterization tool for nanoscale identification, co-localization, and potentially quantification of deactivation phenomena in 3D space within entire catalyst particles

    Harte Röntgen‐Nanotomographie zur 3D‐Analyse der Verkokung in Nickel‐basierten Katalysatoren

    Get PDF
    Das VerstĂ€ndnis der Katalysatordesaktivierung durch Verkokung ist entscheidend fĂŒr ein wissensbasiertes Katalysator- und Prozessdesign bei Reaktionen mit Kohlenstoffverbindungen. Die Katalysatorverkokung wird dabei typischerweise durch Post-Mortem-Analyse untersucht. In der vorliegenden Arbeit wird ptychographische Röntgentomographie (PXCT) zur Analyse von kĂŒnstlich verkokten Ni/Al2O3-Katalysatoren fĂŒr die CO2-Methansierung und CH4-Trockenreformierung verwendet. PXCT liefert dabei 3D-Informationen der lokalen Elektronendichte mit ca. 80 nm Auflösung und ermöglicht somit die Visualisierung und Untersuchung der AusprĂ€gung der Verkokung in Katalysatorpartikeln mit einem Durchmesser von ca. 40 Όm. Die Verkokung wurde hauptsĂ€chlich im nanoporösen Festkörper identifiziert und konnte nicht in den aufgelösten Makroporen gefunden werden. Die Kohlenstoffbildung wurde unabhĂ€ngig dazu mittels operando Raman-Spektroskopie bestĂ€tigt. PXCT wird als aufkommende Charakterisierungstechnik hervorgehoben, die eine nanoskalige Identifizierung, Lokalisierung und möglicherweise Quantifizierung von verschiedenen DesaktivierungsphĂ€nomenen mit 3D-Auflösung in kompletten Katalysatorpartikeln ermöglicht

    X-Ray ptychography with a laboratory source

    Get PDF
    X-ray ptychography has revolutionized nanoscale phase contrast imaging at large-scale synchrotron sources in recent years. We present here the first successful demonstration of the technique in a small-scale laboratory setting. An experiment was conducted with a liquid metal jet x-ray source and a single photon-counting detector with a high spectral resolution. The experiment used a spot size of 5 mu m to produce a ptychographic phase image of a Siemens star test pattern with a submicron spatial resolution. The result and methodology presented show how high-resolution phase contrast imaging can now be performed at small-scale laboratory sources worldwide

    Porosity and Structure of Hierarchically Porous Ni/Al₂O₃ Catalysts for CO₂ Methanation

    Get PDF
    CO2_{2} methanation is often performed on Ni/Al2_{2}O3_{3} catalysts, which can suffer from mass transport limitations and, therefore, decreased efficiency. Here we show the application of a hierarchically porous Ni/Al2_{2}O2_{2} catalyst for methanation of CO2_{2}. The material has a well-defined and connected meso- and macropore structure with a total porosity of 78%. The pore structure was thoroughly studied with conventional methods, i.e., N2_{2} sorption, Hg porosimetry, and He pycnometry, and advanced imaging techniques, i.e., electron tomography and ptychographic X-ray computed tomography. Tomography can quantify the pore system in a manner that is not possible using conventional porosimetry. Macrokinetic simulations were performed based on the measures obtained by porosity analysis. These show the potential benefit of enhanced mass-transfer properties of the hierarchical pore system compared to a pure mesoporous catalyst at industrially relevant conditions. Besides the investigation of the pore system, the catalyst was studied by Rietveld refinement, diffuse reflectance ultraviolet-visible (DRUV/vis) spectroscopy, and H2_{2}-temperature programmed reduction (TPR), showing a high reduction temperature required for activation due to structural incorporation of Ni into the transition alumina. The reduced hierarchically porous Ni/Al2_{2}O3_{3} catalyst is highly active in CO2_{2} methanation, showing comparable conversion and selectivity for CH4_{4} to an industrial reference catalyst
    corecore