3,400 research outputs found
Collapse of a Molecular Cloud Core to Stellar Densities: The First Three-Dimensional Calculations
We present results from the first three-dimensional calculations ever to
follow the collapse of a molecular cloud core (~ 10^{-18} g cm^{-3}) to stellar
densities (> 0.01 g cm^{-3}). The calculations resolve structures over 7 orders
of magnitude in spatial extent (~ 5000 AU - 0.1 R_\odot), and over 17 orders of
magnitude in density contrast. With these calculations, we consider whether
fragmentation to form a close binary stellar system can occur during the second
collapse phase. We find that, if the quasistatic core that forms before the
second collapse phase is dynamically unstable to the growth of non-axisymmetric
perturbations, the angular momentum extracted from the central regions of the
core, via gravitational torques, is sufficient to prevent fragmentation and the
formation of a close binary during the subsequent second collapse.Comment: ApJ Letters, in press (will appear in Nov 20 issue; available from
the ApJ Rapid Release web page). 7 pages, incl. 5 figures. Also available at
http://www.mpia-hd.mpg.de/theory/bat
On Tits' Centre Conjecture for Fixed Point Subcomplexes
We give a short and uniform proof of a special case of Tits' Centre
Conjecture using a theorem of J-P. Serre and a result from our earlier work. We
consider fixed point subcomplexes of the building of a
connected reductive algebraic group , where is a subgroup of .Comment: 4 pages; minor changes, to appear in C. R. Acad. Sci. Paris Ser. I
Mat
Formation of Globular Clusters in Galaxy Mergers
We present a high-resolution simulation of globular cluster formation in a
galaxy merger. For the first time in such a simulation, individual star
clusters are directly identified and followed on their orbits. We
quantitatively compare star formation in the merger to that in the unperturbed
galaxies. The merging galaxies show a strong starburst, in sharp contrast to
their isolated progenitors. Most star clusters form in the tidal features. With
a mass range of --, they are
identified as globular clusters. The merger remnant is an elliptical galaxy.
Clusters with different mass or age have different radial distributions in the
galaxy. Our results show that the high specific frequency and bimodal
distribution of metallicity observed in elliptical galaxies are natural
products of gas-rich mergers, supporting a merger origin for the ellipticals
and their globular cluster systems.Comment: ApJL accepted, version with high quality color images can be found in
http://research.amnh.org/~yuexing/astro-ph/0407248.pd
The effect of magnetic fields on star cluster formation
We examine the effect of magnetic fields on star cluster formation by
performing simulations following the self-gravitating collapse of a turbulent
molecular cloud to form stars in ideal MHD. The collapse of the cloud is
computed for global mass-to-flux ratios of infinity, 20, 10, 5 and 3, that is
using both weak and strong magnetic fields. Whilst even at very low strengths
the magnetic field is able to significantly influence the star formation
process, for magnetic fields with plasma beta < 1 the results are substantially
different to the hydrodynamic case. In these cases we find large-scale
magnetically-supported voids imprinted in the cloud structure; anisotropic
turbulent motions and column density structure aligned with the magnetic field
lines, both of which have recently been observed in the Taurus molecular cloud.
We also find strongly suppressed accretion in the magnetised runs, leading to
up to a 75% reduction in the amount of mass converted into stars over the
course of the calculations and a more quiescent mode of star formation. There
is also some indication that the relative formation efficiency of brown dwarfs
is lower in the strongly magnetised runs due to the reduction in the importance
of protostellar ejections.Comment: 16 pages, 9 figures, 8 very pretty movies, MNRAS, accepted. Version
with high-res figures + movies available from
http://www.astro.ex.ac.uk/people/dprice/pubs/mcluster/index.htm
The thermodynamics of collapsing molecular cloud cores using smoothed particle hydrodynamics with radiative transfer
We present the results of a series of calculations studying the collapse of
molecular cloud cores performed using a three-dimensional smoothed particle
hydr odynamics code with radiative transfer in the flux-limited diffusion
approximation. The opacities and specific heat capacities are identical for
each calculation. However, we find that the temperature evolution during the
simulations varies significantly when starting from different initial
conditions. Even spherically-symmetric clouds with different initial densities
show markedly different development. We conclude that simple barotropic
equations of state like those used in some previous calculations provide at
best a crude approximation to the thermal behaviour of the gas. Radiative
transfer is necessary to obtain accurate temperatures.Comment: 8 pages, 9 figures, accepted for publication in MNRA
Complete Reducibility and Commuting Subgroups
Let G be a reductive linear algebraic group over an algebraically closed
field of characteristic p. We study J.-P. Serre's notion of G-complete
reducibility for subgroups of G. In particular, for a subgroup H and a normal
subgroup N of H, we look at the relationship between G-complete reducibility of
N and of H, and show that these properties are equivalent if H/N is linearly
reductive, generalizing a result of Serre. We also study the case when H = MN
with M a G-completely reducible subgroup of G which normalizes N. We show that
if G is connected, N and M are connected commuting G-completely reducible
subgroups of G, and p is good for G, then H = MN is also G-completely
reducible.Comment: 21 pages; to appear in J. Reine Angew. Math. final for
Evaluation of delays in technical approval of UK Highways Act section 278 projects
This paper attempts to address the causes of delays to the legal and technical approval processes involved in the creation of agreements authorising works to public highways under s.278 Highways Act (1980) specific to Warwickshire County Council, UK, and whether the type of contract (JCT or NEC) or s.278 agreement (minor or major) has any tangible influence. A series of questionnaires and interviews were carried out on a sample group of individuals including designers, developers, construction lawyers, and council engineers with extensive industry experience in relation to s.278 legal, technical, construction and adoption processes. The results revealed the key causes of delays, and therefore the barriers to prompt and efficient approval processes, as the lack of communication between developer and local authority, inexperienced developers’ engineers, poor quality drawings, and insufficient information in the local authority’s design guide. These key factors are discussed and recommendations are provided to tackle these issues
Modelling circumstellar discs with 3D radiation hydrodynamics
We present results from combining a grid-based radiative transfer code with a
Smoothed Particle Hydrodynamics code to produce a flexible system for modelling
radiation hydrodynamics. We use a benchmark model of a circumstellar disc to
determine a robust method for constructing a gridded density distribution from
SPH particles. The benchmark disc is then used to determine the accuracy of the
radiative transfer results. We find that the SED and the temperature
distribution within the disc are sensitive to the representation of the disc
inner edge, which depends critically on both the grid and SPH resolution. The
code is then used to model a circumstellar disc around a T-Tauri star. As the
disc adjusts towards equilibrium vertical motions in the disc are induced
resulting in scale height enhancements which intercept radiation from the
central star. Vertical transport of radiation enables these perturbations to
influence the mid-plane temperature of the disc. The vertical motions decay
over time and the disc ultimately reaches a state of simultaneous hydrostatic
and radiative equilibrium.Comment: MNRAS accepted; 15 pages; 17 figures, 4 in colou
Simulations of Stellar Collisions Involving Pre-Main Sequence Stars
In this paper, we present the results of smoothed particle hydrodynamic (SPH)
simulations of collisions between pre-main sequence stars and a variety of
other kinds of stars. Simulations over a range of impact parameters and
velocities were performed. We find that pre-main sequence stars tend to ``wrap
themselves'' around their impactor. We discuss the probable evolutionary state
of products of collisions between pre-main sequence stars and pre-main
sequence, main sequence, giant branch, and compact stars. The nature of the
collision product does not depend strongly on the impact parameter or the
velocity of the collision.Comment: Accepted by Ap
- …