33 research outputs found

    Ancient segmentally duplicated LCORL retrocopies in equids.

    Get PDF
    LINE-1 is an active transposable element encoding proteins capable of inserting host gene retrocopies, resulting in retro-copy number variants (retroCNVs) between individuals. Here, we performed retroCNV discovery using 86 equids and identified 437 retrocopy insertions. Only 5 retroCNVs were shared between horses and other equids, indicating that the majority of retroCNVs inserted after the species diverged. A large number (17-35 copies) of segmentally duplicated Ligand Dependent Nuclear Receptor Corepressor Like (LCORL) retrocopies were present in all equids but absent from other extant perissodactyls. The majority of LCORL transcripts in horses and donkeys originate from the retrocopies. The initial LCORL retrotransposition occurred 18 million years ago (17-19 95% CI), which is coincident with the increase in body size, reduction in digit number, and changes in dentition that characterized equid evolution. Evolutionary conservation of the LCORL retrocopy segmental amplification in the Equidae family, high expression levels and the ancient timeline for LCORL retrotransposition support a functional role for this structural variant

    Multiple FGF4 retrocopies recently derived within canids

    Get PDF
    Two transcribed retrocopies of the fibroblast growth factor 4 (FGF4) gene have previously been described in the domestic dog. An FGF4 retrocopy on chr18 is associated with disproportionate dwarfism, while an FGF4 retrocopy on chr12 is associated with both disproportionate dwarfism and intervertebral disc disease (IVDD). In this study, whole-genome sequencing data were queried to identify other FGF4 retrocopies that could be contributing to phenotypic diversity in canids. Additionally, dogs with surgically confirmed IVDD were assayed for novel FGF4 retrocopies. Five additional and distinct FGF4 retrocopies were identified in canids including a copy unique to red wolves (Canis rufus). The FGF4 retrocopies identified in domestic dogs were identical to domestic dog FGF4 haplotypes, which are distinct from modern wolf FGF4 haplotypes, indicating that these retrotransposition events likely occurred after domestication. The identification of multiple, full length FGF4 retrocopies with open reading frames in canids indicates that gene retrotransposition events occur much more frequently than previously thought and provide a mechanism for continued genetic and phenotypic diversity in canids

    The Effects of FGF4 Retrogenes on Canine Morphology

    Get PDF
    Two FGF4 retrogenes (FGF4L1 on chromosome 18 and FGF4L2 on chromosome 12) have been identified to cause dwarfism across many dog breeds. Some breeds are nearly homozygous for both retrogenes (e.g., Dachshunds) and others are homozygous for just one (e.g., Beagles and Scottish Terriers). Since most breeds do not segregate both of these retrogenes, it is challenging to evaluate their individual effects on long bone length and body size. We identified two dog breeds selected for hunting ability, the Alpine Dachsbracke and the Schweizer Niederlaufhund, that segregate both of these retrogenes. Using individual measurements of height at the shoulder, back length, head width, thorax depth and width, and thoracic limb measurements, we evaluated the combined effects of FGF4 retrogenes within these breeds. We applied multivariable linear regression analysis to determine the effects of retrogene copy numbers on the measurements. Copy numbers of both retrogenes had significant effects reducing height at the shoulders and antebrachial length, with FGF4L1 having a much greater effect than FGF4L2. FGF4L1 alone influenced the degree of carpal valgus and FGF4L2 alone increased head width. Neither retrogene had an effect on thorax width or depth. Selectively breeding dogs with FGF4L1 and without FGF4L2 would likely lead to a reduction in the FGF4L2-related risk of intervertebral disc herniation while maintaining the reduction in leg length resulting from FGF4L1

    SLC25A12 Missense Variant in Nova Scotia Duck Tolling Retrievers Affected by Cerebellar Degeneration—Myositis Complex (CDMC)

    Get PDF
    We investigated two litters of distantly related Nova Scotia Duck Tolling Retrievers (NSDTR), of which four puppies were affected by cerebellar signs with or without neuromuscular weakness. The phenotype was termed cerebellar degeneration—myositis complex (CDMC). We suspected a heritable condition and initiated a genetic analysis. The genome of one affected dog was sequenced and compared to 565 control genomes. This search yielded a private protein-changing SLC25A12 variant in the affected dog, XM_038584842.1:c.1337C>T, predicted to result in the amino acid change XP_038440770.1:(p.Pro446Leu). The genotypes at the variant co-segregated with the phenotype as expected for a monogenic autosomal recessive mode of inheritance in both litters. Genotyping of 533 additional NSDTR revealed variant allele frequencies of 3.6% and 1.3% in a European and a North American cohort, respectively. The available clinical and biochemical data, together with current knowledge about SLC25A12 variants and their functional impact in humans, mice, and dogs, suggest the p.Pro446Leu variant is a candidate causative defect for the observed phenotype in the affected dogs

    A Missense Variant Affecting the C-Terminal Tail of UNC93B1 in Dogs with Exfoliative Cutaneous Lupus Erythematosus (ECLE)

    Get PDF
    Cutaneous lupus erythematosus (CLE) in humans encompasses multiple subtypes that exhibit a wide array of skin lesions and, in some cases, are associated with the development of systemic lupus erythematosus (SLE). We investigated dogs with exfoliative cutaneous lupus erythematosus (ECLE), a dog-specific form of chronic CLE that is inherited as a monogenic autosomal recessive trait. A genome-wide association study (GWAS) with 14 cases and 29 controls confirmed a previously published result that the causative variant maps to chromosome 18. Autozygosity mapping refined the ECLE locus to a 493 kb critical interval. Filtering of whole genome sequence data from two cases against 654 controls revealed a single private protein-changing variant in this critical interval, UNC93B1:c.1438C>A or p.Pro480Thr. The homozygous mutant genotype was exclusively observed in 23 ECLE affected German Shorthaired Pointers and an ECLE affected Vizsla, but absent from 845 controls. UNC93B1 is a transmembrane protein located in the endoplasmic reticulum and endolysosomes, which is required for correct trafficking of several Toll-like receptors (TLRs). The p.Pro480Thr variant is predicted to affect the C-terminal tail of the UNC93B1 that has recently been shown to restrict TLR7 mediated autoimmunity via an interaction with syndecan binding protein (SDCBP). The functional knowledge on UNC93B1 strongly suggests that p.Pro480Thr is causing ECLE in dogs. These dogs therefore represent an interesting spontaneous model for human lupus erythematosus. Our results warrant further investigations of whether genetic variants affecting the C-terminus of UNC93B1 might be involved in specific subsets of CLE or SLE cases in humans and other species

    Bacterial and Archaea Community Present in the Pine Barrens Forest of Long Island, NY: Unusually High Percentage of Ammonia Oxidizing Bacteria

    Get PDF
    Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0–10 cm (Horizon O); 11–25 cm (Horizon A) and 26–40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil

    Recent, full-length gene retrocopies are common in canids.

    No full text
    corecore