144 research outputs found

    New Q matrices and their functional equations for the eight vertex model at elliptic roots of unity

    Full text link
    The Q matrix invented by Baxter in 1972 to solve the eight vertex model at roots of unity exists for all values of N, the number of sites in the chain, but only for a subset of roots of unity. We show in this paper that a new Q matrix, which has recently been introduced and is non zero only for N even, exists for all roots of unity. In addition we consider the relations between all of the known Q matrices of the eight vertex model and conjecture functional equations for them.Comment: 20 pages, 2 Postscript figure

    Random walks on finite lattice tubes

    Full text link
    Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk will visit a particular lattice site before being absorbed. Results are obtained for lattice tubes of arbitrary size and each of the regular lattice types; square, triangular and honeycomb. The results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms on single walled zig-zag carbon nano-tubes with open ends.Comment: 22 pages, 4 figure

    Closure of two dimensional turbulence: the role of pressure gradients

    Full text link
    Inverse energy cascade regime of two dimensional turbulence is investigated by means of high resolution numerical simulations. Numerical computations of conditional averages of transverse pressure gradient increments are found to be compatible with a recently proposed self-consistent Gaussian model. An analogous low order closure model for the longitudinal pressure gradient is proposed and its validity is numerically examined. In this case numerical evidence for the presence of higher order terms in the closure is found. The fundamental role of conditional statistics between longitudinal and transverse components is highlighted.Comment: 4 pages, 2 figures, in press on PR

    Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces

    Full text link
    This paper is the third in a sequel to develop a super-analogue of the classical Selberg trace formula, the Selberg supertrace formula. It deals with bordered super Riemann surfaces. The theory of bordered super Riemann surfaces is outlined, and the corresponding Selberg supertrace formula is developed. The analytic properties of the Selberg super zeta-functions on bordered super Riemann surfaces are discussed, and super-determinants of Dirac-Laplace operators on bordered super Riemann surfaces are calculated in terms of Selberg super zeta-functions.Comment: 43 pages, amste

    Normal fluid eddies in the thermal counterflow past a cylinder

    Get PDF
    A recent Particle Image Velocimetry (PIV) experiment in He II counterflow around a cylindrical obstacle showed the existence of apparently stationary normal fluid ddies both downstream (at the rear) and upstream (in front) of the cylinder. This rather surprising result does not have an analogue in experimental observations of classical fluid flows. We suggest that the explanation for the apparent stability of such eddies can be provided entirely from the viewpoint of classical fluid dynamics. We also discuss a possible connection between the emergence of the normal fluid eddies and the polarization of the vortex tangle in superfluid.Comment: submitte

    Supercoherent States, Super K\"ahler Geometry and Geometric Quantization

    Full text link
    Generalized coherent states provide a means of connecting square integrable representations of a semi-simple Lie group with the symplectic geometry of some of its homogeneous spaces. In the first part of the present work this point of view is extended to the supersymmetric context, through the study of the OSp(2/2) coherent states. These are explicitly constructed starting from the known abstract typical and atypical representations of osp(2/2). Their underlying geometries turn out to be those of supersymplectic OSp(2/2) homogeneous spaces. Moment maps identifying the latter with coadjoint orbits of OSp(2/2) are exhibited via Berezin's symbols. When considered within Rothstein's general paradigm, these results lead to a natural general definition of a super K\"ahler supermanifold, the supergeometry of which is determined in terms of the usual geometry of holomorphic Hermitian vector bundles over K\"ahler manifolds. In particular, the supergeometry of the above orbits is interpreted in terms of the geometry of Einstein-Hermitian vector bundles. In the second part, an extension of the full geometric quantization procedure is applied to the same coadjoint orbits. Thanks to the super K\"ahler character of the latter, this procedure leads to explicit super unitary irreducible representations of OSp(2/2) in super Hilbert spaces of L2L^2 superholomorphic sections of prequantum bundles of the Kostant type. This work lays the foundations of a program aimed at classifying Lie supergroups' coadjoint orbits and their associated irreducible representations, ultimately leading to harmonic superanalysis. For this purpose a set of consistent conventions is exhibited.Comment: 53 pages, AMS-LaTeX (or LaTeX+AMSfonts

    Discrete cilia modelling with singularity distributions

    Get PDF
    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous ‘singularity models’ is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a ‘posterior tilt,’ and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 ÎŒm/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system

    A 14-year experience with kidney transplantation.

    Get PDF
    Between November, 1962 and August, 1975, 668 kidney transplants were done in 556 consecutive patients at Denver, Colorado. The Denver experience has been divided into 7 periods of time, according to the conditions of care during each period. The results in related transplantation have changed little during the decade beginning in 1966. The results in unrelated transplantation have not materially changed since 1968. The long-term patient survival after related transplantation has been better than after cadaver transplantation. The results of transplantation in 57 children ages 3 to 18 years have been slightly better than the results of adult transplantation. The outcome of kidney transplantation and the feasibility of improving this therapy with present techniques are limited by our inability to accurately match each patient with the immunologically best donor and by our inability to precisely control the immune system of the recipient. Rejection is still the main reason for graft loss, and sepsis remains the main cause of patient mortality. More specific and less toxic means of achieving graft acceptance are needed before a higher level of patient service can be realized. However, even with the tools now available, thousands of recipients throughout the world have been returned to useful lives
    • 

    corecore