13 research outputs found

    Expression of circulating micrornas linked to bone metabolism in chronic kidney disease-mineral and bone disorder

    No full text
    The pathophysiology of chronic kidney disease–mineral and bone disorder (CKD-MBD) is complex and multifactorial. Recent studies have identified a link between microRNAs (miRNAs) and bone loss. In this study, we investigated the expression of miRNAs in CKD-MBD. In this case-control study, we included thirty patients with CKD-MBD (cases) and 30 age-and gender-matched healthy individuals (controls). Bone mineral density (BMD) and trabecular bone score (TBS) evaluation was performed with dual X-ray absorptiometry. The selected panel of miRNAs included: hsa-miRNA-21-5p; hsa-miRNA-23a-3p; hsa-miRNA-24-2-5p; hsa-miRNA-26a-5p; hsa-miRNA-29a-3; hsa-miRNA-124-3p; hsa-miRNA-2861. The majority of cases had low BMD values. The relative expression of miRNA-21-5p was 15 times lower [fold regulation (FR): −14.7 ± 8.1, p = 0.034), miRNA-124-3p, 6 times lower (FR: −5.9 ± 4, p = 0.005), and miRNA-23a-3p, 4 times lower (FR: −3.8 ± 2.0, p = 0.036) in cases compared to controls. MiRNA-23a-3p was significantly and inversely correlated with TBS, adjusted for calcium metabolism and BMD values (beta = −0.221, p = 0.003, 95% CI −0.360, −0,081) in cases. In a receiver operating characteristic (ROC) analysis, expression of miRNA-124-3p demonstrated 78% sensitivity and 83% specificity in identifying CKD patents with osteoporosis. Serum expression of miRNAs related to osteoblasts (miRNA-23a-3p) and osteoclasts (miRNA-21-5p, miRNA-124-3p) is significantly altered in patients with CKD-MBD. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. article distributed under the terms and conditions of the Cre

    Expression of circulating micrornas linked to bone metabolism in chronic kidney disease-mineral and bone disorder

    No full text
    The pathophysiology of chronic kidney disease–mineral and bone disorder (CKD-MBD) is complex and multifactorial. Recent studies have identified a link between microRNAs (miRNAs) and bone loss. In this study, we investigated the expression of miRNAs in CKD-MBD. In this case-control study, we included thirty patients with CKD-MBD (cases) and 30 age-and gender-matched healthy individuals (controls). Bone mineral density (BMD) and trabecular bone score (TBS) evaluation was performed with dual X-ray absorptiometry. The selected panel of miRNAs included: hsa-miRNA-21-5p; hsa-miRNA-23a-3p; hsa-miRNA-24-2-5p; hsa-miRNA-26a-5p; hsa-miRNA-29a-3; hsa-miRNA-124-3p; hsa-miRNA-2861. The majority of cases had low BMD values. The relative expression of miRNA-21-5p was 15 times lower [fold regulation (FR): −14.7 ± 8.1, p = 0.034), miRNA-124-3p, 6 times lower (FR: −5.9 ± 4, p = 0.005), and miRNA-23a-3p, 4 times lower (FR: −3.8 ± 2.0, p = 0.036) in cases compared to controls. MiRNA-23a-3p was significantly and inversely correlated with TBS, adjusted for calcium metabolism and BMD values (beta = −0.221, p = 0.003, 95% CI −0.360, −0,081) in cases. In a receiver operating characteristic (ROC) analysis, expression of miRNA-124-3p demonstrated 78% sensitivity and 83% specificity in identifying CKD patents with osteoporosis. Serum expression of miRNAs related to osteoblasts (miRNA-23a-3p) and osteoclasts (miRNA-21-5p, miRNA-124-3p) is significantly altered in patients with CKD-MBD. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. article distributed under the terms and conditions of the Cre

    Intrinsically Disordered and Pliable Starmaker-Like Protein from Medaka (Oryzias latipes) Controls the Formation of Calcium Carbonate Crystals

    Get PDF
    Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed
    corecore